首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the interest of extending the operation time of underwater mooring platforms, it is promising and feasible to harvest energy from ocean. A low frequency horizontal pendulum ocean kinetic energy harvester for underwater mooring platforms was presented in this paper. Several series of experimental tests on energy harvesting were carried out. The present research investigates the influence of parameters including excitation frequency, excitation amplitude, inertia modification (ballasting) and pendulum rod length, on the energy harvesting performance. Results show that this type of horizontal pendulum energy harvester has the best performance at resonant frequencies 0.2, 0.25 and 0.3 Hz, with the pendulum pitch angle 3°, 4° and 5°, respectively. It is indicated that the energy harvester can slightly tune the natural frequency to meet the prominent excitation frequency through varying the pendulum pitch angle. The test results also show that the optimal output power take off damping is 30 or 40 Ω in most case, and the maximum average output power can reach 0.3 W, with high normalized power density of 3453.8 kg/m3. Similarly, the results show that three parameters, excitation amplitude, inertia modification (ballasting), and pendulum rod length, have a significant influence on the energy harvesting. This work constitutes a preliminary step towards the development of a low frequency horizontal pendulum ocean kinetic energy harvester for underwater mooring platforms.  相似文献   

2.
李阳  温华兵  张坤  刘伟  谭飞 《船舶工程》2019,41(6):43-47
本文首先介绍了一种并联式ISD被动隔振系统并建立了该系统的理论公式,发现隔振对象的振幅取决于激励的振幅、频率比、系统的阻尼比以及惯质比。为了研究惯容器对船舶舱室低频隔振的影响,选用了挖泥船监控舱室作为研究对象,研究结果表明,惯容器能够降低共振频率,抑制共振峰,惯质系数越大,系统阻尼比越小,效果越明显。在使用惯容器后,监控舱室的低频隔振效果得到明显的提升,8.5Hz处的加速度共振峰下降了75%,本文的研究成果为惯容器在船海领域的应用提供了参考。  相似文献   

3.
Energy shortages and environmental pollution are becoming increasingly severe globally. The exploitation and utilization of renewable energy have become an effective way to alleviate these problems. To improve power production capacity, power output quality, and cost effectiveness, comprehensive marine energy utilization has become an inevitable trend in marine energy development. Based on a semi-submersible wind-tidal combined power generation device,a three-dimensional frequency domain potential flow theory is used to study the hydrodynamic performance of such a device. For this study, the RAOs and hydrodynamic coefficients of the floating carrier platform to the regular wave were obtained. The influence of the tidal turbine on the platform in terms of frequency domain was considered as added mass and damping. The direct load of the tidal turbine was obtained by CFX.FORTRAN software was used for the second development of adaptive query workload aware software, which can include the external force. The motion response of the platform to the irregular wave and the tension of the mooring line were calculated under the limiting condition(one mooring line breakage). The results showed that the motion response of the carrier to the surge and sway direction is more intense, but the swing amplitude is within the acceptable range. Even in the worst case scenario, the balance position of the platform was still in the positioning range, which met the requirements of the working sea area. The safety factor of the mooring line tension also complied with the requirements of the design specification. Therefore, it was found that the hydrodynamic performance and motion responses of a semi-submersible wind-tidal combined power generation device can meet the power generation requirements under all design conditions, and the device presents a reliable power generation system.  相似文献   

4.
卓陈祥  邓芳 《船电技术》2009,29(10):16-21
在1FC5隐极同步发电机的基础上进行改型设计和调试,在THYRIPART励磁系统(不带调差装置)的基础上,去除电压整定器,增加励磁分流控制装置,就能满足宽频发电机的要求,使频率在40~60Hz之间变化时,输出电压在0.9~1.1UN之内变化。  相似文献   

5.
This paper aims to numerically investigate the effects of parametric instability on piezoelectric energy harvesting from the transverse galloping of a square prism. A two degrees-of-freedom reduced-order model for this problem is proposed and numerically integrated. A usual quasi-steady galloping model is applied, where the transverse force coefficient is adopted as a cubic polynomial function with respect to the angle of attack. Time-histories of nondimensional prism displacement, electric voltage and power dissipated at both the dashpot and the electrical resistance are obtained as functions of the reduced velocity. Both, oscillation amplitude and electric voltage, increased with the reduced velocity for all parametric excitation conditions tested. For low values of reduced velocity, 2:1 parametric excitation enhances the electric voltage. On the other hand, for higher reduced velocities, a 1:1 parametric excitation (i.e., the same as the natural frequency) enhances both oscillation amplitude and electric voltage. It has been also found that, depending on the parametric excitation frequency, the harvested electrical power can be amplified in 70% when compared to the case under no parametric excitation.  相似文献   

6.
To distinguish offshore and onshore seismic ground motions, conventional analyses in terms of peak ground acceleration (PGA) and earthquake response spectrum (ERS) have been carried out in a recent work by authors and other papers in literature. In the present study, distinct temporal and spectral characteristics between onshore and offshore earthquake ground motions are further investigated in time-domain and frequency-domain. The data used is 69 pairs of concurrent onshore and offshore ground motions collected from the Kyoshin Network (K-NET). Each pair of data are of approximately identical epicenter distances. Comparisons are made on zero-up-crossing period (Tz), peak-to-trough acceleration range (Apt) and period (Tpt), duration of ground motion (Td), predominant frequency (fp) and the spectral bandwidth parameter (ε). The results indicate that for offshore horizontal and vertical seismic signals, statistics of Tz, Tpt, Td and predominant period Tp tend to be larger than the onshore counterparts. Meanwhile, ε of the offshore vertical ground motions is also greater. Through the proposed energy ratio (ER) analysis, the spectral energy of offshore ground motion is found to shift to moderate and low frequency bands. The time-frequency analysis conducted by Hilbert-Huang transform (HHT) shows that the Hilbert spectra of offshore accelerations contain larger spectral energy than the onshore counterpart but the corresponding instantaneous frequencies at peak energy are smaller, especially for horizontal recordings. Therefore, larger dynamic response of offshore structures is prone to be induced by the offshore ground excitation. This is further validated through the dynamic analysis of a marine pipeline in case study.  相似文献   

7.
复合材料杆件机械阻抗测试方法研究   总被引:2,自引:0,他引:2  
针对复合材料杆试件,从理论上指导了其机械阻抗特性.介绍了机械阻抗测量原理和测量方案,并在阻抗平台上测得了机械阻抗数据.结果表明,激励频率高于100Hz时,理论预测值和试验测量值相差较小,证明了该实验方法的正确性.  相似文献   

8.
通过物理试验研究双色波传入细长港池并激发港池低频振荡,合理的试验布局降低了波浪二次反射对造波机的影响问题。利用快速Fourier变换和小波变换方法分析双色波在港内的幅频响应以及波浪能量的时-频分布情况,并利用小波二阶谱分析港内波浪不同成分之间的非线性相互作用过程。结果表明:当双色波短波频率对应港池不同共振频率时,通过波浪非线性相互作用产生的二阶长波在港内响应幅值不同;短波频率对应港池较低共振频率时,波浪会在港内聚集更多的能量;二阶长波以及高次谐波与双色短波之间呈复杂的非线性能量传递过程。  相似文献   

9.
Hydrodynamic load and motion response are the first considerations in the structural design of a submerged floating tunnel (SFT). Currently, most of the relevant studies have been based on a two-dimensional model test with a fixed or fully free boundary condition, which inhibits a deep investigation of the hydrodynamic characteristics with an elastic constraint. As a result, a series of difficulties exist in the structural design and analysis of an SFT. In this study, an SFT model with a one-degree-of-freedom vertical elastically truncated boundary condition was established to investigate the motion response and hydrodynamic characteristics of the tube under the wave action. The effect of several typical hydrodynamic parameters, such as the buoyancy-weight ratio, γ, the relative frequency, f/fN, the Keulegan–Carpenter (KC) number, the reduced velocity, Ur, the Reynolds number, Re, and the generalized Ursells number, on the motion characteristics of the tube, were selectively analyzed, and the reverse feedback mechanism from the tube's motion response to the hydrodynamic loads was confirmed. Finally, the critical hydrodynamic parameters corresponding to the maximum motion response at different values of γ were obtained, and a formula for calculating the hydrodynamic load parameters of the SFT in the motion state was established. The main conclusions of this study are as follows: (i) Under the wave action, the motion of the SFT shows an apparent nonlinearity, which is mainly caused by the intensive interaction between the tube and its surrounding water particles, as well as the nonlinearity of the wave. (ii) The relative displacement of the tube first increases and then decreases with increasing values of f/fN, Ur, KC number, Re, and the generalized Ursells number. (iii) γ is inversely proportional to the maximum relative displacement of the tube and the wave force on the tube in its motion direction. (iv) Under the motion boundary condition (as opposed to the fixed boundary condition), the peak frequency of the wave force on the SFT in its motion direction decreases and approaches the natural vibration frequency of the tube, whereas the wave force perpendicular to the motion direction increases. When the incident wave frequency is close to the natural vibration frequency of the tube, the tube resonates easily, leading to an increased wave force in the motion direction. (v) If the velocity in the Morison equation is substituted by the water particle velocity measured when the tube is at its equilibrium position, the inertia coefficient in the motion direction of the tube is linearly related to its displacement, whereas that in the direction perpendicular to the motion direction is logarithmically related to its displacement.  相似文献   

10.
In the present paper, the Local Joint Flexibility (LJF) of the ring-stiffened X-joints and plate-stiffened X-joints under compressive load is investigated. In the first phase, a finite element (FE) model was generated and verified with the results of available experimental tests and equations. In the next phase, a set number of 234 FE models were created to evaluate the role of the external ring size (βr and τr), the external plate size (βp and τp), and the connection geometry (γ, τ, and β) on the LJF factor (fLJF). In these FE models, the weld connecting the chord and brace members was generated. The results indicated that the fLJF of a plate stiffened joint can be down to 76% of the fLJF of the corresponding un-stiffened joint. Also, the effect of the ring size on the fLJF was more than the effect of the plate size on the fLJF, because of the stiffener position. Despite the notable effect of the ring and the plate on the fLJF, there is not any study or formula on tubular connections stiffened with ring or plate. Therefore, the FE results were used to propose two parametric formulas for determining the fLJF in X-joints with external ring or external plate under brace compressive load. Moreover, the derived formulas were checked based on the UK DoE acceptance criteria.  相似文献   

11.
近年来,随着深海石油工业的发展,立管的涡激振动现象越来越受学者们关注.使用RANS方程求解器,并结合SST κ-ω湍流模型,对横向和流向自然频率比为1的低质量比弹性支撑圆柱体的两自由度运动进行了数值模拟,计算雷诺数范围为5 300至32 000.采用四阶Runge-Kutta方法求解柱体的振动方程.并结合近期物理实验结果对升力系数、阻力系数、位移和尾涡模式进行了详细比较和讨论.较好地再现了试验观察到的锁定、迟滞、差拍等现象.  相似文献   

12.
Strong restrictions on emissions from marine power plants(particularly SOx,NOx)will probably be adopted in the near future.In this paper,a combined solid oxide fuel cell(SOFC)and steam turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector.The analyzed variant of the combined cycle includes a SOFC operated with natural gas fuel and a steam turbine with a single-pressure waste heat boiler.The calculations were performed for two types of tubular and planar SOFCs,each with an output power of 18 MW.This paper includes a detailed energy analysis of the combined system.Mass and energy balances are performed not only for the whole plant but also for each component in order to evaluate the thermal efficiency of the combined cycle.In addition,the effects of using natural gas as a fuel on the fuel cell voltage and performance are investigated.It has been found that a high overall efficiency approaching 60%may be achieved with an optimum configuration using the SOFC system.The hybrid system would also reduce emissions,fuel consumption,and improve the total system efficiency.  相似文献   

13.
《Marine Structures》2000,13(4-5):233-243
Loads acting on large floating structures usually consist of high-frequency and low-frequency loads. The high-frequency loads are associated with the hydroelastic behavior of the structure and excitation of the natural frequency modes. The low-frequency loads are associated with the body motion of the structure and the wave profile. In design analysis, extreme values of these loads must be combined taking into consideration the correlation between them. This paper discusses a methodology for combining the extreme loads, and proposes a simple formulation suitable for use in reliability analysis. A proposed load combination factor K was found to depend on the correlation coefficient of the two loads, the ratio of their standard deviations and the frequency content of the processes from which the loads are determined. The correlation coefficient was found to depend on the complex frequency response functions of the loads and the input wave spectrum. The paper also discusses characteristic extreme values of slightly nonlinear loads acting on large floating structures.Extreme loads may be based on a storm condition with a specified return period. Since very large floating structures are expected to have a long operational lifetime, the return period must be selected carefully. The paper discusses a method for selecting return periods based on the expected operational life of the structure and encounter probability.  相似文献   

14.
One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on avoiding a battery charging system. Studies have been done on energy harvesting from sea waves, however, considering energy harvesting with random JONSWAP wave theory, then determining the optimum values of energy harvested is new. This paper does that by implementing the JONSWAP wave model, calculating produced power, and realistically showing that output power is decreased in comparison with the more simple Airy wave model. In addition, parameters of the energy harvester system are optimized using a simulated annealing algorithm, yielding increased produced power.  相似文献   

15.
浮筏系统隔振性能的功率流评价指标   总被引:1,自引:0,他引:1  
许树浩  桂洪斌 《船舶力学》2012,16(5):567-572
文章采用刚度为常数、阻尼随频率变化的Bush单元来模拟实际的5-200Hz的隔振器的垂向机械阻抗特性。通过有限元频率响应计算得到了浮筏隔振系统的结点响应信息,在此基础上采用隔振器机械阻抗方程求得隔振器两端的受力值,进而代入功率流表达式得到了系统的输入输出功率流。对系统输入输出的加速度响应和功率流进行了对比分析,结果表明了采用功率流来评价隔振系统的优劣更能反映隔振系统的实际隔振效果。采用功率流作为隔振系统隔振效果的评价标准是合适的,而且在某些方面要优于采用单一的加速度(速度)响应作为评价指标的评价体系。  相似文献   

16.
高杰  龚希武  张恒 《船舶》2016,27(5):22-27
竖轴水轮机作为潮流能转换为电能的核心装置,其水动力性能的优劣将会直接影响到整体发电系统的效率。为了研究大型竖轴水轮机叶片安装角对水轮机水动力性能的影响,基于多参考系模型(MRF),采用Fluent软件对流场中的模型进行3D数值模拟。在转速和来流速度保持不变,改变安装角时,分析同种翼型5个不同安装角叶片对潮流能水轮机的水动力性能的影响。同时分析在同一安装角和旋转速度条件下,不同来流速度对水轮机水动力性能的影响。结果表明,叶片安装角对竖轴潮流水轮机的能量利用率影响较大,来流速度对水轮机叶片表面的静压力和输出功率具有一定的影响。研究结果对今后竖轴水轮机的设计和生产具有借鉴意义。  相似文献   

17.
阻振质量参数对动力舱段隔振性能影响规律研究   总被引:1,自引:0,他引:1  
Rigid blocking masses are located in the typical base structure of a power cabin based on the impedance mismatch principle.By combining the acoustic-structural coupling method and statistical energy analysis,the full-band vibration and sound radiation reduction effect of vibration isolation masses located in a base structure was researched.The influence of the blocking mass’ cross-section size and shape parameters and the layout location of the base isolation performance was discussed.Furthermore,the effectiveness of rigid vibration isolation design of the base structure was validated.The results show that the medium and high frequency vibration and sound radiation of a power cabin are effectively reduced by a blocking mass.Concerning weight increment and section requirement,suitably increasing the blocking mass size and section height and reducing section width can result in an efficiency-cost ratio.  相似文献   

18.
矩形液舱横荡流体载荷的Fluent数值模拟   总被引:2,自引:0,他引:2  
采用CFD软件Fluent对二维矩形液舱不同舱内水深、不同激振频率时的横荡进行数值计算,并将数值结果与实验结果进行比较。结果表明,Fluent可以模拟自由面的翻卷和破碎运动现象,其对于距自由面较深点处流体载荷的计算结果与实验值相符合,但对于自由面附近点,尤其是舱顶上点处的砰击载荷,其计算结果与实验值差别较大。因此,对大幅晃荡的数值模拟仍需进一步研究。  相似文献   

19.
高聪 《船舶工程》2019,41(S1):197-202
针对已建海洋平台结构低频(30Hz以下)线谱振动控制难题,基于吸振原理,开展了低频线谱振动控制方法研究。讨论了动力吸振器与振动系统主结构最优质量比、阻尼比、频率比的取值范围,以及动力吸振器最优布置数量、布置位置等。以典型海洋平台板架结构为例,建立有限元模型,验证了动力吸振系统化方法的有效性,在此基础上,针对某海洋平台振动超标问题,开展了动力吸振系统化方法的工程应用研究,旨在为海洋平台低频线谱振动控制提供方法依据。  相似文献   

20.
为探究弹性复合阻振接头在邮轮通风管道中的减振性能,利用弹性橡胶与质量阻振相结合的质量—阻尼复合阻振技术,设计开发了应用于通风管道中的弹性复合阻振接头,通过风机激励试验研究其在通风管道中的减振性能,得到弹性复合阻振接头在通风管道中的减振效果。试验结果表明:6款弹性复合阻振接头均能有效提高管道结构振动的阻振效果并拓宽阻振频率范围,并且能够降低激励源与管路系统之间的振动传递;在100-5000Hz频率范围内,弹性复合阻振接头的振动传递损失基本在10dB以上,在某些频段下能达到30dB以上,其中双橡胶复合阻振接头在低频中的减振效果最好。试验研究结果对于船舶通风管道的减振设计具有参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号