首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Risk- and reliability-based approaches are increasingly being applied in assisting inspection and maintenance planning. One of the keys to such approaches is properly predicting the hull girder strength (HG) of gradually degradated hull structures. The development has been limited by the lack of data on aging ships—validation of the developed methods has not been possible. To fill the gap of knowledge on hull strength of ships in service, this paper presents a database of as-gauged hull structures and a statistical study of the time-variant HG of tankers. The expanded data set was collected from 2195 as-gauged girth belts (transverse sections) of 211 single-hull tankers that were 12–32 years old. It was intended to (1) provide actual data on hull girder section modulus (HGSM) of tankers, (2) investigate the general trends of the change in the HG over ships’ service life, and (3) propose formulations for presenting time-variant HGSM and coating life.

The data set demonstrated a high variation of HGSM that changed over time. The mean value and standard deviation of HGSM loss were derived as functions of time. The probability density function (pdf) of coating life was also derived. Comparisons were made between previous studies on HG and the current data set. It was found that almost all previous studies showed much greater HG loss than what this database revealed. The refinement of existing calculations appears to be needed. The data set and statistical study were expected to form the basis for validating formulations of HG that are key components in risk- and reliability-based approaches.  相似文献   


2.
In designing the support structures of floating wind turbines (FWTs), a key challenge is to determine the load effects (at the cross-sectional load and stress level). This is because FWTs are subjected to complex global, local, static, and dynamic loads in stochastic environmental conditions. Up to now, most of the studies of FWTs have focused on the dynamic motion characteristics of FWTs, while minimal research has touched upon the internal load effects of the support structure. However, a good understanding of the structural load effects is essential since it is the basis for achieving a good design. Motivated by the situation, this study deals with the global load effect analysis for FWT support structures. A semi-submersible hull of a 10-MW FWT is used in the case study. A novel analysis method is employed to obtain the time-domain internal load effects of the floater, which account for the static and dynamic global loads under the still water, wind, and wave loads and associated motions. The investigation of the internal stresses resulting from various global loads under operational and parked conditions and the dynamic behavior of the structural load effects in various environmental conditions are made. The dominating load components for structural responses of the semi-submersible floater and the significant dynamic characteristics under different wind and wave conditions are identified. The dynamic load effects of the floating support structure are investigated by considering the influence of the second-order wave loads, viscous drag loads induced global motions, and wind and wave misalignments. The main results are discussed, and the main findings are summarized. The insights gained provide a basis for improving the design and analysis of FWT support structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号