首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Experimental hydroelasticity has not followed the rapid evolution of its computational counterpart. Hydroelastic codes have changed significantly in the past few decades, moving to more detailed modelling of both the structure and the fluid domain. Physical models of ships are, even today, manufactured with a very simplified structural arrangement, usually consisting of a hollow rectangular cross section. Appropriate depiction of the internal structural details ensures that properties relevant to antisymmetric vibration are scaled accurately from the real ship to the model. Attempts to create continuous, ship-like structures had limited success, as manufacturing constraints did not allow for much internal structural detail to be included. In this investigation, the first continuous model of a ship with a detailed internal arrangement resembling a container ship is designed, produced using 3D printing and tested in waves. It is demonstrated that the global responses of the hull in regular head waves agree well with theory and past literature, confirming that such a model can represent the behaviour of a ship. Furthermore, it is found that the model is capable of capturing local responses of the structure, something that would be impossible with “traditional” hydroelastic ship models. Finally, the capability of the model to be used to investigate antisymmetric vibrations is confirmed. The methodology developed here opens a whole new world of possibilities for experiments with models that are tailored to the focus of the investigation at hand. Moreover, it offers a powerful tool for the validation of modern state-of-the-art hydroelastic codes. Ultimately, it creates the next step in the investigation of dynamic responses of ship structures, which contribute significantly to accumulating damage of the hull. Better understanding of these responses will allow designers to avoid over-engineering and use of big safety factors to account for uncertainties in their predictions.  相似文献   

2.
Hydroelasticity of ships and studies in coupled antisymmetric vibrations have become increasingly important with container ships becoming faster and more slender. In this investigation, a ship-like structure is modelled and an equivalent backbone with a U-shaped cross section is designed. Their responses are compared, and limitations of various modelling approaches are discussed. It is demonstrated that scaling of the natural frequencies is insufficient to ensure scaling of the antisymmetric mode shapes and the relevant differences are quantified. Consequently, the backbone model should be viewed as a separate structure for validation purposes rather than a scaled model of a ship.  相似文献   

3.
富喜  王国治 《船舶》2005,(4):50-55
基于船舶水泵机组隔振浮筏这种多挠动源的系统,探讨了浮筏装置所具有的特性以及隔振设计技术.利用有限元法数值模拟了隔振系统忽略和计及管系下的两种模型,综合分析了空间管系对浮筏隔振系统隔振性能的影响,并就管路和机组间刚性连接和多种弹性连接下系统隔振性能作了对比分析.分析结果表明,空间管系减弱了系统的隔振性能,在动力设备和管路间使用挠性接管等弹性连接可大大减小管系的影响.文中探讨了水泵机组的隔振设计技术以及为了提高隔振性能而应注意的若干方面.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号