首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper develops a new procedure for the problem of multimodal urban corridor travel demand estimation by using the Analytic Hierarchy Process (AHP). Certain conceptual and operational features of the AHP are common to the discrete choice theory-based modeling approach. Whereas the computational and data requirements of standard discrete choice models are immense, the proposed AHP approach deals efficiently with multidimensionality, nested demand structure and discrete travel decision making behavior. The paper concludes by summarizing the AHP-aided, step-by-step procedure for metropolitan travel demand (modal split) estimation.  相似文献   

2.
The primary shortcoming of traditional four-step models is that they cannot capture derived travel demand behaviors. However, travel demand modeling (TDM) is an essential input for urban transportation planning. TDM needs to be highly precise and accurate by integrating the accurate base year estimation along with suitable alternatives. Currently, activity-based models (ABMs) have been developed mostly for large metropolitan planning organizations (MPO), whereas smaller/medium-sized MPOs typically lack these models. The main reason for this disparity in ABM development is the complexity of the models and the cost and data requirements needed. We posit however that smaller MPOs could develop ABMs from traditional travel surveys. Therefore, the specific aim of this paper is to develop a probabilistic home-based destination activity trip generation model considering travel time behavior. Results show that the developed model can significantly capture the actual number of trip generations.  相似文献   

3.
The commonly used photochemical air quality model, the Urban Airshed Model (UAM), requires emission estimates with grid-based, hourly resolution. In contrast, travel demand models, used to simulate the travel activity model inputs for the transportation-related emissions estimation, typically only provide traffic volumes for a specific travel period (e.g. the a.m. and p.m. peak periods). A few transportation agencies have developed procedures to allocate period-based travel demand data into hourly emission inventories for regional grid cells. Because there was no theoretical framework for disaggregating period-based volumes to hourly volumes, application of these procedures frequently relied upon a single hypothetical hourly distribution of travel volumes. This study presents a new theoretical modeling framework that integrates traffic count data and travel demand model link volume estimates to derive intra-period hourly volume estimates by trip purpose. We propose a new interpretation of the model coefficients and define hourly allocation factors by trip purpose. These allocation factors can be used to disaggregate the travel demand model ‘period-based’ simulation volumes into hourly resolution, thereby improving grid-based, hourly emission estimates in the UAM.  相似文献   

4.
To study the effect of different transport policies on reducing the average comprehensive travel cost (CTC) of all travel modes, by increasing public transport modal share and decreasing car trips, an optimization model is developed based on travel cost utility. A nested logit model is applied to analyze trip modal split. A Genetic Algorithm is then used to determine the implementation of optimal solutions in which various transport policies are applied in order to reduce average CTC. The central urban region of Beijing is selected as the study area in this research. Different policies are analyzed for comparison, focusing on their optimal impacts on minimizing the average CTC utility of all travel modes by rationally allocating trips to different travel modes in the study area. It is found that the proposed optimization model provides a reasonable indication of the effect of policies applied.  相似文献   

5.
Employers are regularly involved in transport planning and characteristic workplace-oriented tools include: (1) travel plans for building projects, (2) mandatory travel plans, (3) subsidies to employers with an advanced travel plan and (4) best travel plan awards. In all cases, experts judge the level of car use. We argue that decision-makers might benefit from a multiple regression-based benchmark modelling tool that estimates the expected share of the car. In this paper, we estimate the share of car users in the commuting modal split at workplaces. However, since the amount of information available to experts differs, we gradually add information to the model to measure the impact of data availability. Without historic data on modal split, the current share can only be predicted moderately well, i.e. within a 20% range. Besides adding the past, results improve by using homogenous and regional subsamples. Nevertheless, quantitative analyses do not make expert knowledge obsolete.  相似文献   

6.
This paper develops a procedure for travel demand estimation via the Saaty method of Analytic Hierarchy. A stratification of the travel demand by trip-making and trip attributes has been represented more inclusively in a hierarchy system. Various elements and dimensions of the hierarchy have been hypothesized as different levels of decisions made by trip-makers. The elements contained in a set of specified matrices of travel attributes have been weighed utilizing a ratio scale, in a process of mapping transportation systems (modal) attributes with the characteristic trip-making behavior in a hierarchical demand structure. The principal output of this procedure is an estimate of the trip distribution by mode, or modal split. The estimate closely approximates the observed modal split pattern for the inter city travel problem simulated. This procedure is proposed for travel demand forecasting and planning.  相似文献   

7.
This paper proposes a conceptual framework to model the travel mode searching and switching dynamics. The proposed approach is structurally different from existing mode choice models in the way that a non-homogeneous hidden Markov model (HMM) has been constructed and estimated to model the dynamic mode srching process. In the proposed model, each hidden state represents the latent modal preference of each traveler. The empirical application suggests that the states can be interpreted as car loving and carpool/transit loving, respectively. At each time period, transitions between the states are functions of time-varying covariates such as travel time and travel cost of the habitual modes. The level-of-service (LOS) changes are believed to have an enduring impact by shifting travelers to a different state. While longitudinal data is not readily available, the paper develops an easy-to-implement memory-recall survey to collect required process data for the empirical estimation. Bayesian estimation and Markov chain Monte Carlo method have been applied to implement full Bayesian inference. As demonstrated in the paper, the estimated HMM is reasonably sensitive to mode-specific LOS changes and can capture individual and system dynamics. Once applied with travel demand and/or traffic simulation models, the proposed model can describe time-dependent multimodal behavior responses to various planning/policy stimuli.  相似文献   

8.
Recent empirical studies have revealed that travel time variability plays an important role in travelers' route choice decisions. To simultaneously account for both reliability and unreliability aspects of travel time variability, the concept of mean‐excess travel time (METT) was recently proposed as a new risk‐averse route choice criterion. In this paper, we extend the mean‐excess traffic equilibrium model to include heterogeneous risk‐aversion attitudes and elastic demand. Specifically, this model explicitly considers (1) multiple user classes with different risk‐aversions toward travel time variability when making route choice decisions under uncertainty and (2) the elasticity of travel demand as a function of METT when making travel choice decisions under uncertainty. This model is thus capable of modeling travelers' heterogeneous risk‐averse behaviors with both travel choice and route choice considerations. The proposed model is formulated as a variational inequality problem and solved via a route‐based algorithm using the modified alternating direction method. Numerical analyses are also provided to illustrate the features of the proposed model and the applicability of the solution algorithm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This study examines mode choice behavior for intercity business and personal/recreational trips. It uses multinomial logit and nested logit methods to analyze revealed preference data provided by travelers along the Yong-Tai-Wen multimodal corridor in Zhejiang, China. Income levels are found to be positively correlated with mode share increases for high-speed rail (HSR), expressway-based bus, and auto modes, while travel time and trip costs are negatively correlated with modal shift. Longer distance trips trigger modal shifts to HSR services but prevent modal shift to expressway-based auto use due to escalation of fuel cost and toll charges. Travelers are less elastic in their travel time and cost for trips by nonexpressway-based auto use modes. The magnitude of elasticity for travel time is higher than trip costs for business trips and lower for personal/recreational trips. The study provides some policy suggestions for transportation planners and decision-makers.  相似文献   

10.
Travel demand model system for the information era   总被引:5,自引:0,他引:5  
The emergence of new information technologies and recent advances in existing technologies have provided new dimensions for travel demand decisions. In this paper we propose a comprehensive travel demand modeling framework to identify and model the urban development decisions of firms and developers and the mobility, activity and travel decisions of individuals and households, and to develop a system of models that can be used by decision makers and planners to evaluate the effects of changes in the transportation system and development of information technologies (e.g. various tele-commuting, tele-services and Intelligent Transportation Systems).The implementation of an operational model system based on this framework is envisioned as an incremental process starting with the current best practice of disaggregate travel demand model systems. To this end, we present an activity-based model system as the first stage in the development of an operational model system.  相似文献   

11.
In densely populated and congested urban areas, the travel times in congested multi‐modal transport networks are generally varied and stochastic in practice. These stochastic travel times may be raised from day‐to‐day demand fluctuations and would affect travelers' route and mode choice behaviors according to their different expectations of on‐time arrival. In view of these, this paper presents a reliability‐based user equilibrium traffic assignment model for congested multi‐modal transport networks under demand uncertainty. The stochastic bus frequency due to the unstable travel time of bus route is explicitly considered. By the proposed model, travelers' route and mode choice behaviors are intensively explored. In addition, a stochastic state‐augmented multi‐modal transport network is adopted in this paper to effectively model probable transfers and non‐linear fare structures. A numerical example is given to illustrate the merits of the proposed model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper analyses how the high-speed rail construction in Northeast Japan (Tohoku) has affected total demand and interregional travel patterns. We use annual interregional passenger data from 1989 to 2012 and apply regression analysis with the demand between Tokyo and the Tohoku prefectures as the dependent variable. We distinguish particularly between the ‘Full-’ and the ‘Mini-’ Shinkansen, where the latter are branch services running with reduced speed. We find that the ‘Full-Shinkansen’ quickly increases rail and total public transport trips and generates additional rail demand year on year. The ‘Mini-Shinkansen’ impacts are less pronounced. Furthermore, our analysis shows that the Shinkansen has shifted some demand from air to rail once it started operation and increased rail share gradually. We therefore suggest that predictions of demand impacts should carefully distinguish immediate from gradual impacts. We also discuss differences in regional demand in that not all prefectures have gained equally from Shinkansen construction.  相似文献   

13.
The cost of nation wide travel surveys is high. Hence in many developing countries, planners have found it difficult to develop intercity transportation plans due to the non availability of origin‐destination trip matrices. This paper will describe a method for the intercity auto travel estimation for Sri Lanka with link traffic volume data.

The paper outlines the rationale of selecting the district capitals of Sri Lanka as its “cities,” the methodology for selecting the intercity road network, determination of link travel times from express bus schedules and the location of link volume counting positions.

Initially, the total auto travel demand model is formulated with various trip purpose sub‐models. This model is finally modified to a simple demand model with district urban population and travel times between city pairs as the exogenous variables, to overcome statistical estimation difficulties. The final demand model has statistics within the acceptable regions.

The advantages of a simple model are discussed and possible extensions are proposed.  相似文献   

14.
BackgroundCycling for transportation has become an increasingly important component of strategies to address public health, climate change, and air quality concerns in urban centers. Within this context, planners and policy makers would benefit from an improved understanding of available interventions and their relative effectiveness for cycling promotion. We examined predictors of bicycle commuting that are relevant to planning and policy intervention, particularly those amenable to short- and medium-term action.MethodsWe estimated a travel mode choice model using data from a survey of 765 commuters who live and work within the municipality of Barcelona. We considered how the decision to commute by bicycle was associated with cycling infrastructure, bike share availability, travel demand incentives, and other environmental attributes (e.g., public transport availability). Self-reported and objective (GIS-based) measures were compared. Point elasticities and marginal effects were calculated to assess the relative explanatory power of the independent variables considered.ResultsWhile both self-reported and objective measures of access to cycling infrastructure were associated with bicycle commuting, self-reported measures had stronger associations. Bicycle commuting had positive associations with access to bike share stations but inverse associations with access to public transport stops. Point elasticities suggested that bicycle commuting has a mild negative correlation with public transport availability (−0.136), bike share availability is more important at the work location (0.077) than at home (0.034), and bicycle lane presence has a relatively small association with bicycle commuting (0.039). Marginal effects suggested that provision of an employer-based incentive not to commute by private vehicle would be associated with an 11.3% decrease in the probability of commuting by bicycle, likely reflecting the typical emphasis of such incentives on public transport.ConclusionsThe results provide evidence of modal competition between cycling and public transport, through the presence of public transport stops and the provision of public transport-oriented travel demand incentives. Education and awareness campaigns that influence perceptions of cycling infrastructure availability, travel demand incentives that encourage cycling, and policies that integrate public transport and cycling may be promising and cost-effective strategies to promote cycling in the short to medium term.  相似文献   

15.
We estimate the elasticities of fuel and travel demand with respect to fuel prices and income in the case of Norway. Furthermore, we derive the direct rebound effects that explain the degree to which a fuel price increase is “offset” in the form of greater fuel use and/or travel due to improvements in vehicle fuel efficiency. For this purpose, we use and compare two alternative econometric approaches: the error correction model (ECM) and the dynamic model. Our initial assumption is that one should not be indifferent with respect to the approach used to derive elasticities. The data used are for the period 1980–2011. Our results indicate the following: (1) the dynamic model fits the data better than the ECM model does; (2) the estimated elasticities of fuel demand with respect to price and income are −0.26 and 0.06 in the short run and −0.36 and 0.09 in the long run. For travel demand, the respective elasticities are −0.11 and 0.06 in the short run and −0.24 and 0.13 in the long run, implying inelastic demands for fuel and travel demand; and (3) rebound effects indicate that 0.26% and 0.06% of fuel savings as a result of fuel price increase will be offset in the form of more fuel use in the short run and in the long run, respectively, if fuel efficiency increases by 1%. Our policy recommendations are that policies should not be indifferent to the methods used to derive elasticities. We contend that it is crucial to seriously consider rebound effects in policy making because basic elasticity estimates exaggerate the impact of fuel price increases.  相似文献   

16.
Abstract

This paper proposes a method for estimating transportation supply requirements when the suppressed demand of the transportation disadvantaged (TD) can be calculated and added to existing demand for travel. The underlying assumption is that the travel conditions of these TD groups must be equal to the ‘conventional’ demand, known as ‘full release’. Utilising the modelling approach for TD, suppressed demand analysis, diagnosis of difficulties and equity between conventional and disadvantaged groups were realised, while elaborating special cases for the most vulnerable TD groups (such as elderly and disabled persons) and simultaneously identifying areas of difficulty. From the early virtual results, it is concluded that, for the full release of suppressed trips (only a 5% increase), policy makers must be ready to face some financial burdens, requiring coordination of effort to both standardise these TD groups and reduce the costs incurred by operators.  相似文献   

17.

The choice behaviour of low cost travel (LCT) modes is very sensitive to travel distance. A line haul system designed on the basis of current planning practice of locating widely spaced stations to cater auto and bus feeder modes with the primary objective of gaining travel speed is hostile to non‐motorized and low cost feeder modes. With the revival of interest in promoting the use of walk'n ride and bike'n ride modes, there is a need to develop an appropriate tool to examine the effect of their specific characteristics in establishing the number and location of stations.

A generic normative behavioural hybrid model for locating the cost minimizing number and location of stations is developed for an LCT‐fed line haul system. The model considers the system with many to many two dimensional line haul demand density function in which the density varies in both x‐ and y‐directions. The feeder mode choice behaviour is incorporated in the model by integrating probability‐access/egress distance function with the objective function. Explicit functional relationships among the parameters of these feeder modes such as modal share as a function of access/egress distance with the parameters of line haul systems are developed. Dynamic programming is used to minimize the system cost. The generic model is shown to collapse into several simplified models capable of yielding approximate solutions for several well known special cases. It has been shown that location of stations is sensitive to the through load on board as well as users’ cost that defines the choice behaviour at large. Numerical examples are presented to demonstrate the applicability of the model.  相似文献   

18.
Abstract

Malaysia is one of the few countries in the world that provides a fuel subsidy to consumers. Due to the recent economic crisis, the Malaysian Government decided to revise its fuel subsidization policy from a fixed price subsidy to a floating price subsidy dependent on global oil demand. Recognizing that the change in fuel subsidization policy can have an impact on travel behavior, this article investigates the short-term impact of the policy change on private and public transportation in the Klang Valley region of Malaysia. Spectral analyses are performed to investigate if the policy change has an impact on private vehicle travel demand, measured in terms of road traffic, and short-term travel demand elasticity with respect to fuel price is estimated. To measure the impact on the public transportation system, the demand cross-elasticity values of rail transit and buses are also estimated. It was found that traffic flow reduces with an increase in fuel price, although elasticity and cross-elasticity values obtained are low. The article finds that there is a potential mode shift from private vehicles to rail transit with increasing fuel price. It is demonstrated that reducing fuel price subsidy can be an effective travel demand management strategy to alleviate congestion.  相似文献   

19.
Recent empirical studies on the value of time and reliability reveal that travel time variability plays an important role on travelers' route choice decision process. It can be considered as a risk to travelers making a trip. Therefore, travelers are not only interested in saving their travel time but also in reducing their risk. Typically, risk can be represented by two different aspects: acceptable risk and unacceptable risk. Acceptable risk refers to the reliability aspect of acceptable travel time, which is defined as the average travel time plus the acceptable additional time (or buffer time) needed to ensure more frequent on‐time arrivals, while unacceptable risk refers to the unreliability aspect of unacceptable late arrivals (though infrequent) that have a travel time excessively higher than the acceptable travel time. Most research in the network equilibrium based approach to modeling travel time variability ignores the unreliability aspect of unacceptable late arrivals. This paper examines the effects of both reliability and unreliability aspects in a network equilibrium framework. Specifically, the traditional user equilibrium model, the demand driven travel time reliability‐based user equilibrium model, and the α‐reliable mean‐excess travel time user equilibrium model are considered in the investigation under an uncertain environment due to stochastic travel demand. Numerical results are presented to examine how these models handle risk under travel time variability.  相似文献   

20.
This paper demonstrates how induced travel can be estimated for incorporation into the evaluation process for highway expansion projects, at a sketch planning level of analysis. The approach is useful especially in cases where four-step urban travel models are either unavailable or are unable to forecast the full induced demand effects. The methodology is applied to a hypothetical freeway expansion analysis. Our analysis suggests that the magnitude of travel induced by highway expansion increases significantly as a function of initial congestion levels prior to expansion. However, under even extreme scenarios of initial congestion and consequent forecasted induced travel, there is a positive impact with respect to congestion relief.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号