首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This paper presents a method for estimating missing real-time traffic volumes on a road network using both historical and real-time traffic data. The method was developed to address urban transportation networks where a non-negligible subset of the network links do not have real-time link volumes, and where that data is needed to populate other real-time traffic analytics. Computation is split between an offline calibration and a real-time estimation phase. The offline phase determines link-to-link splitting probabilities for traffic flow propagation that are subsequently used in real-time estimation. The real-time procedure uses current traffic data and is efficient enough to scale to full city-wide deployments. Simulation results on a medium-sized test network demonstrate the accuracy of the method and its robustness to missing data and variability in the data that is available. For traffic demands with a coefficient of variation as high as 40%, and a real-time feed in which as much as 60% of links lack data, we find the percentage root mean square error of link volume estimates ranges from 3.9% to 18.6%. We observe that the use of real-time data can reduce this error by as much as 20%.  相似文献   

2.
Financial constraints and lack of availability of traffic‐related information significantly hinder the development of driving cycles in developing countries. This paper proposes an economical, practical, accurate methodology for the development of driving cycles, including the development of a driving cycle for Colombo, Sri Lanka. The proposed methodology captures regional traffic and road conditions and selects a model that represents the collected data sample with minimum available traffic‐related information. Existing methods were modified for route selection by dividing routes into links using nodes or physical junctions to minimize the number of trips required for data collection. Speed–time data for respective links were used to reconstruct speed–time profiles of identified origin–destination pairs. The on‐board method was used for data collection, and the Markov chain theory was used to develop a transition probability matrix of state changes. An additional matrix was introduced to the existing method to improve model representativeness to the collected data sample. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper aims to cross-compare existing estimation methods for the Macroscopic Fundamental Diagram. Raw data are provided by a mesoscopic simulation tool for two typical networks that mimic an urban corridor and a meshed urban center. We mainly focus on homogenous network loading in order to fairly cross-compare the different methods with the analytical reference. It appears that the only way to estimate the MFD without bias is to have the full information of vehicle trajectories over the network and to apply Edie’s definitions. Combining information from probes (mean network speed) and loop detectors (mean network flow) also provides accurate results even for low sampling rate (<10%). Loop detectors fail to provide a good estimation for mean network speed or density because they cannot capture the traffic spatial dynamics over links. This paper proposes a simple adjustment technic in order to reduce the discrepancy when only loop detectors are available.  相似文献   

4.
For a large number of applications conventional methods for estimating an origin destination matrix become too expensive to use. Two models, based on information minimisation and entropy maximisation principles, have been developed by the authors to estimate an O-D matrix from traffic counts. The models assume knowledge of the paths followed by the vehicles over the network. The models then use the traffic counts to estimate the most likely O-D matrix consistent with the link volumes available and any prior information about the trip matrix. Both models can be used to update and improve a previous O-D matrix. An algorithm to find a solution to the model is then described. The models have been tested with artificial data and performed reasonably well. Further research is being carried out to validate the models with real data.  相似文献   

5.
This paper focuses on the problem of estimating historical traffic volumes between sparsely-located traffic sensors, which transportation agencies need to accurately compute statewide performance measures. To this end, the paper examines applications of vehicle probe data, automatic traffic recorder counts, and neural network models to estimate hourly volumes in the Maryland highway network, and proposes a novel approach that combines neural networks with an existing profiling method. On average, the proposed approach yields 24% more accurate estimates than volume profiles, which are currently used by transportation agencies across the US to compute statewide performance measures. The paper also quantifies the value of using vehicle probe data in estimating hourly traffic volumes, which provides important managerial insights to transportation agencies interested in acquiring this type of data. For example, results show that volumes can be estimated with a mean absolute percent error of about 21% at locations where average number of observed probes is between 30 and 47 vehicles/h, which provides a useful guideline for assessing the value of probe vehicle data from different vendors.  相似文献   

6.
Previous methods for estimating a trip matrix from traffic volume counts have used the principles of maximum entropy and minimum information. These techniques implicitly give as little weight to prior information on the trip matrix as possible. The new method proposed here is based on Bayesian statistical inference and has several advantages over these earlier approaches. It allows complete flexibility in the degree of belief placed on the prior estimate of the trip matrix and also allows for different degrees of belief in diffeent parts of the prior estimate. Furthermore under certain assumptions the method reduces to a simple updating scheme in which observations on the link flows successively modify the trip matrix. At the end of the scheme confidence intervals are available for the estimates of the trip matrix elements.  相似文献   

7.
This paper proposes a solution to the problem of limited network sensor coverage caused by insufficient sample size of probe vehicles or inadequate numbers of fixed sensors. A framework is proposed to estimate link travel times using available data from neighbouring links. Two clues are used for real-time travel time estimation: link historical travel time data and online travel time data from neighbour links. In the absence of online travel time data from neighbour links, historical records only have to be relied upon. However, where the two types of data are available, a data fusion scheme can be applied to make use of the two clues. The proposed framework is validated using real-life data from the City of Vancouver, British Columbia. The estimation accuracy is found to be comparable to the existing literature. Overall, the results demonstrate the feasibility of using neighbour links data as an additional source of information that might not have been extensively explored before.  相似文献   

8.
Real-time estimation of the traffic state in urban signalized links is valuable information for modern traffic control and management. In recent years, with the development of in-vehicle and communication technologies, connected vehicle data has been increasingly used in literature and practice. In this work, a novel data fusion approach is proposed for the high-resolution (second-by-second) estimation of queue length, vehicle accumulation, and outflow in urban signalized links. Required data includes input flow from a fixed detector at the upstream end of the link as well as location and speed of the connected vehicles. A probability-based approach is derived to compensate the error associated with low penetration rates while estimating the queue tail location, which renders the proposed methodology more robust to varying penetration rates of connected vehicles. A well-defined nonlinear function based on traffic flow theory is developed to attain the number of vehicles inside the queue based on queue tail location and average speed of connected vehicles. The overall scheme is thoroughly tested and demonstrated in a realistic microscopic simulation environment for three types of links with different penetration rates of connected vehicles. In order to test the efficiency of the proposed methodology in case that data are available at higher sampling times, the estimation procedure is also demonstrated for different time resolutions. The results demonstrate the efficiency and accuracy of the approach for high-resolution estimation, even in the presence of measurement noise.  相似文献   

9.
Recently connected vehicle (CV) technology has received significant attention thanks to active pilot deployments supported by the US Department of Transportation (USDOT). At signalized intersections, CVs may serve as mobile sensors, providing opportunities of reducing dependencies on conventional vehicle detectors for signal operation. However, most of the existing studies mainly focus on scenarios that penetration rates of CVs reach certain level, e.g., 25%, which may not be feasible in the near future. How to utilize data from a small number of CVs to improve traffic signal operation remains an open question. In this work, we develop an approach to estimate traffic volume, a key input to many signal optimization algorithms, using GPS trajectory data from CV or navigation devices under low market penetration rates. To estimate traffic volumes, we model vehicle arrivals at signalized intersections as a time-dependent Poisson process, which can account for signal coordination. The estimation problem is formulated as a maximum likelihood problem given multiple observed trajectories from CVs approaching to the intersection. An expectation maximization (EM) procedure is derived to solve the estimation problem. Two case studies were conducted to validate our estimation algorithm. One uses the CV data from the Safety Pilot Model Deployment (SPMD) project, in which around 2800 CVs were deployed in the City of Ann Arbor, MI. The other uses vehicle trajectory data from users of a commercial navigation service in China. Mean absolute percentage error (MAPE) of the estimation is found to be 9–12%, based on benchmark data manually collected and data from loop detectors. Considering the existing scale of CV deployments, the proposed approach could be of significant help to traffic management agencies for evaluating and operating traffic signals, paving the way of using CVs for detector-free signal operation in the future.  相似文献   

10.
The Macroscopic Fundamental Diagram (MFD) has been recognized as a powerful framework to develop network-wide control strategies. Recently, the concept has been extended to the three-dimensional MFD, used to investigate traffic dynamics of multi-modal urban cities, where different transport modes compete for, and share the limited road infrastructure. In most cases, the macroscopic traffic variables are estimated using either loop detector data (LDD) or floating car data (FCD). Taking into account that none of these data sources might be available, in this study we propose novel estimation methods for the space-mean speed of cars based on: (i) the automatic vehicle location (AVL) data of public transport where no FCD is available; and (ii) the fused FCD and AVL data sources where both are available, but FCD is not complete. Both methods account for the network configuration layout and the configuration of the public transport system. The first method allows one to derive either uni-modal or bi-modal macroscopic fundamental relationships, even in the extreme cases where no LDD nor FCD exist. The second method does not require a priori knowledge about FCD penetration rates and can significantly improve the estimation accuracy of the macroscopic fundamental relationships. Using empirical data from the city of Zurich, we demonstrate the applicability and validate the accuracy of the proposed methods in real-life traffic scenarios, providing a cross-comparison with the existing estimation methods. Such empirical comparison is, to the best of our knowledge, the first of its kind. The findings show that the proposed AVL-based estimation method can provide a good approximation of the average speed of cars at the network level. On the other hand, by fusing the FCD and AVL data, especially in case of sparse FCD, it is possible to obtain a more representative outcome regarding the performance of multi-modal traffic.  相似文献   

11.
Complexity in transport networks evokes the need for instant response to the changing dynamics and uncertainties in the upstream operations, where multiple modes of transport are often available, but rarely used in conjunction. This paper proposes a model for strategic transport planning involving a network wide intermodal transport system. The system determines the spatio-temporal states of road based freight networks (unimodal) and future traffic flow in definite time intervals. This information is processed to devise efficient scheduling plans by coordinating and connecting existing rail transport schedules to road based freight systems (intermodal). The traffic flow estimation is performed by kernel based support vector mechanisms while mixed integer programming (MIP) is used to optimize schedules for intermodal transport network by considering various costs and additional capacity constraints. The model has been successfully applied to an existing Fast Moving Consumer Goods (FMCG) distribution network in India with encouraging results.  相似文献   

12.
This study develops a four-step travel demand model for estimating traffic volumes for low-volume roads in Wyoming. The study utilizes urban travel behavior parameters and processes modified to reflect the rural and low-volume nature of Wyoming local roads. The methodology disaggregates readily available census block data to create transportation analysis zones adequate for estimating traffic on low-volume rural roads. After building an initial model, the predicted and actual traffic volumes are compared to develop a calibration factor for adjusting trip rates. The adjusted model is verified by comparing estimated and actual traffic volumes for 100 roads. The R-square value from fitting predicted to actual traffic volumes is determined to be 74% whereas the Percent Root Mean Square Error is found to be 50.3%. The prediction accuracy for the four-step travel demand model is found to be better than a regression model developed in a previous study.  相似文献   

13.
Information on link flows in a vehicular traffic network is critical for developing long-term planning and/or short-term operational management strategies. In the literature, most studies to develop such strategies typically assume the availability of measured link traffic information on all network links, either through manual survey or advanced traffic sensor technologies. In practical applications, the assumption of installed sensors on all links is generally unrealistic due to budgetary constraints. It motivates the need to estimate flows on all links of a traffic network based on the measurement of link flows on a subset of links with suitably equipped sensors. This study, addressed from a budgetary planning perspective, seeks to identify the smallest subset of links in a network on which to locate sensors that enables the accurate estimation of traffic flows on all links of the network under steady-state conditions. Here, steady-state implies that the path flows are static. A “basis link” method is proposed to determine the locations of vehicle sensors, by using the link-path incidence matrix to express the network structure and then identifying its “basis” in a matrix algebra context. The theoretical background and mathematical properties of the proposed method are elaborated. The approach is useful for deploying long-term planning and link-based applications in traffic networks.  相似文献   

14.
Partly because of counting errors and partly because counts may be carried out on different days, traffic counts on links of a network are unlikely to satisfy the flow conservation constraint “flow IN = flow out” at every node of the network. Van Zuylen and Willumsen (1980) have described a method of eliminating inconsistencies in traffic counts when a single count is available for each link in the network. In this paper, the method is extended to the case when more than one count is available on some links of the network. In addition, an algorithm is described for application of the method.  相似文献   

15.
Most existing dynamic origin–destination (O–D) estimation approaches are grounded on the assumption that a reliable initial O–D set is available and traffic volume data from detectors are accurate. However, in most traffic systems, both types of critical information are either not available or subjected to some level of measurement errors such as traffic counts and speed measurement from sensors. To contend with those critical issues, this study presents two robust algorithms, one for estimation of an initial O–D set and the other for tackling the input measurement errors with an extended estimation algorithm. The core concept of the initial O–D estimation algorithm is to decompose the target network in a number of sub-networks based on proposed rules, and then execute the estimation of the initial O–D set iteratively with the observable information at the first time interval. To contend with the inevitable detector measurement error, this study proposes an interval-based estimation algorithm that converts each model input data as an interval with its boundaries being set based on some prior knowledge. The performance of both proposed algorithms has been tested with a simulated system, the I-95 freeway corridor between I-495 and I-695, and the results are quite promising.  相似文献   

16.
Estimation of origin–destination (O–D) matrices from link count data is considered. This problem is challenging because the number of parameters to be estimated is typically larger than the number of network links. As a result, it is (usually) impossible to identify a unique optimal estimate of the O–D matrix from mean link traffic counts. However, information from the covariance matrix of link count data collected over a sequence of days can relieve this problem of indeterminacy. This fact is illustrated through a simple example. The use of second-order statistical properties of the data in O–D matrix estimation is then explored, and a class of estimators proposed. Practical problems of model mis-specification are discussed and some avenues for future research outlined.  相似文献   

17.
In order to monitor pedestrian volumes in the Johannesburg Central Business District (CBD), a streamlined approach was needed that would provide useable information quickly and cheaply. To this end a computerised model was developed which uses a limited number of observations of pedestrian density in order to compute mean and peak traffic volumes. Although the data input is parsimonious in the extreme, the model has been able to match the accuracy required for pedestrian volume monitoring.  相似文献   

18.
Big data from floating cars supply a frequent, ubiquitous sampling of traffic conditions on the road network and provide great opportunities for enhanced short-term traffic predictions based on real-time information on the whole network. Two network-based machine learning models, a Bayesian network and a neural network, are formulated with a double star framework that reflects time and space correlation among traffic variables and because of its modular structure is suitable for an automatic implementation on large road networks. Among different mono-dimensional time-series models, a seasonal autoregressive moving average model (SARMA) is selected for comparison. The time-series model is also used in a hybrid modeling framework to provide the Bayesian network with an a priori estimation of the predicted speed, which is then corrected exploiting the information collected on other links. A large floating car data set on a sub-area of the road network of Rome is used for validation. To account for the variable accuracy of the speed estimated from floating car data, a new error indicator is introduced that relates accuracy of prediction to accuracy of measure. Validation results highlighted that the spatial architecture of the Bayesian network is advantageous in standard conditions, where a priori knowledge is more significant, while mono-dimensional time series revealed to be more valuable in the few cases of non-recurrent congestion conditions observed in the data set. The results obtained suggested introducing a supervisor framework that selects the most suitable prediction depending on the detected traffic regimes.  相似文献   

19.
A promising framework that describes traffic conditions in urban networks is the macroscopic fundamental diagram (MFD), relating average flow and average density in a relatively homogeneous urban network. It has been shown that the MFD can be used, for example, for traffic access control. However, an implementation requires an accurate estimation of the MFD with the available data sources.Most scientific literature has considered the estimation of MFDs based on either loop detector data (LDD) or floating car data (FCD). In this paper, however, we propose a methodology for estimating the MFD based on both data sources simultaneously. To that end, we have defined a fusion algorithm that separates the urban network into two sub-networks, one with loop detectors and one without. The LDD and the FCD are then fused taking into account the accuracy and network coverage of each data type. Simulations of an abstract grid network and the network of the city of Zurich show that the fusion algorithm always reduces the estimation error significantly with respect to an estimation where only one data source is used. This holds true, even when we account for the fact that the probe penetration rate of FCD needs to be estimated with loop detectors, hence it might also include some errors depending on the number of loop detectors, especially when probe vehicles are not homogeneously distributed within the network.  相似文献   

20.
In recent years, rapid advances in information technology have led to various data collection systems which are enriching the sources of empirical data for use in transport systems. Currently, traffic data are collected through various sensors including loop detectors, probe vehicles, cell-phones, Bluetooth, video cameras, remote sensing and public transport smart cards. It has been argued that combining the complementary information from multiple sources will generally result in better accuracy, increased robustness and reduced ambiguity. Despite the fact that there have been substantial advances in data assimilation techniques to reconstruct and predict the traffic state from multiple data sources, such methods are generally data-driven and do not fully utilize the power of traffic models. Furthermore, the existing methods are still limited to freeway networks and are not yet applicable in the urban context due to the enhanced complexity of the flow behavior. The main traffic phenomena on urban links are generally caused by the boundary conditions at intersections, un-signalized or signalized, at which the switching of the traffic lights and the turning maneuvers of the road users lead to shock-wave phenomena that propagate upstream of the intersections. This paper develops a new model-based methodology to build up a real-time traffic prediction model for arterial corridors using data from multiple sources, particularly from loop detectors and partial observations from Bluetooth and GPS devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号