首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steady and Transient Turning of Tractor-Semitrailer and Truck-Trailer Combinations: A Linear Analysis

A simplified analysis is made of the yaw stability and control of the two types of the commercial vehicle combinations (tractor-semitrailer, truck-trailer) at a constant forward velocity during steady and transient turning. The combined vehicle is treated as a linear dynamic system (Fig. 2). The steer angle at the front wheels of the tractor (or truck) and the steady-state responses if the road verhicle train (yaw rate, articulation angles and sideslip angle) are calculated (Equations 18 to 25). Exploratory calculations are performed to determine the influence of the cornering stiffness of the tires for the two types of the vehicle combinations upon the steady-state responses (Figs. 7 to 10). For a linear simplified model of articulated vehicle the steady-state turning behaviour is stable also under conditions of rather high driving speed (70 km/h). A simplified analysis of the transient turning behaviour of the two types of road trains has shown the tractor-semitrailer to preserve stability even under driving speeds exceeding 70 km/h (Fig. 13), whereas the truck-trailer combinations appear to become oscillatory unstable if the driving speed rises above the 60 km/h margin (Fig. 14).  相似文献   

2.
ABSTRACT

Steady and Transient Turning of Tractor-Semitrailer and Truck-Trailer Combinations: A Linear Analysis

A simplified analysis is made of the yaw stability and control of the two types of the commercial vehicle combinations (tractor-semitrailer, truck-trailer) at a constant forward velocity during steady and transient turning. The combined vehicle is treated as a linear dynamic system (Fig. 2). The steer angle at the front wheels of the tractor (or truck) and the steady-state responses if the road verhicle train (yaw rate, articulation angles and sideslip angle) are calculated (Equations 18 to 25). Exploratory calculations are performed to determine the influence of the cornering stiffness of the tires for the two types of the vehicle combinations upon the steady-state responses (Figs. 7 to 10). For a linear simplified model of articulated vehicle the steady-state turning behaviour is stable also under conditions of rather high driving speed (70 km/h). A simplified analysis of the transient turning behaviour of the two types of road trains has shown the tractor-semitrailer to preserve stability even under driving speeds exceeding 70 km/h (Fig. 13), whereas the truck-trailer combinations appear to become oscillatory unstable if the driving speed rises above the 60 km/h margin (Fig. 14).  相似文献   

3.
This paper presents a review of theoretical and experimental works relative to the handling performance of commercial vehicle combinations. A commercial vehicle combination (road train) is defined as a tractor unit and an arbitrary number of trailers. The review contains literature corresponding the most widely used types of trains: tractor-semitrailer, truck-trailer and tractor-semitrailer-semitrailer (doubles). The vehicle dynamic performance has been investigated taking into consideration the following features: directional performance, roll dynamics, braking performance and combined braking and directional performance. With the aim of evaluating the present state of research activities in the field of lateral dynamics of articulated commercial vehicles, the author has compiled some 250 references.  相似文献   

4.
SUMMARY

This paper presents a review of theoretical and experimental works relative to the handling performance of commercial vehicle combinations. A commercial vehicle combination (road train) is defined as a tractor unit and an arbitrary number of trailers. The review contains literature corresponding the most widely used types of trains: tractor-semitrailer, truck-trailer and tractor-semitrailer-semitrailer (doubles). The vehicle dynamic performance has been investigated taking into consideration the following features: directional performance, roll dynamics, braking performance and combined braking and directional performance. With the aim of evaluating the present state of research activities in the field of lateral dynamics of articulated commercial vehicles, the author has compiled some 250 references.  相似文献   

5.
This paper aims to improve car body stability performance by optimising locomotive parameters when coupler jack-knifing occurs during braking. In order to prevent car body instability behaviour caused by coupler jack-knifing, a multi-locomotive simulation model and a series of field braking tests are developed to analyse the influence of the secondary suspension and the secondary lateral stopper on the car body stability performance during braking. According to simulation and test results, increasing secondary lateral stiffness contributes to limit car body yaw angle during braking. However, it seriously affects the dynamic performance of the locomotive. For the secondary lateral stopper, its lateral stiffness and free clearance have a significant influence on improving the car body stability capacity, and have less effect on the dynamic performance of the locomotive. An optimised measure was proposed and adopted on the test locomotive. For the optimised locomotive, the lateral stiffness of secondary lateral stopper is increased to 7875?kN/m, while its free clearance is decreased to 10?mm. The optimised locomotive has excellent dynamic and safety performance. Comparing with the original locomotive, the maximum car body yaw angle and coupler rotation angle of the optimised locomotive were reduced by 59.25% and 53.19%, respectively, according to the practical application. The maximum derailment coefficient was 0.32, and the maximum wheelset lateral force was 39.5?kN. Hence, reasonable parameters of secondary lateral stopper can improve the car body stability capacity and the running safety of the heavy haul locomotive.  相似文献   

6.
与传统的有效宽度计算方法不同,在整桥的动力分析结果和弹性支承连续梁法荷载横向分布理论的基础上,通过假定弹性支承连续梁法动力分析模型的面内1阶转动频率与整桥1阶扭转频率相等,提出了一种多梁式小箱梁桥沿纵向有效宽度的动力识别方法。然后利用该方法识别得到的有效宽度计算各主梁的横向分布影响线及横向弯矩,并与空间有限元模型的计算结果进行了对比,结果表明该法具有很高的精度,为此类问题的研究提供了一种新的思路。  相似文献   

7.
A comparison between theoretical calculations on dynamic lateral behaviour of railway vehicles and experimental results shows quite a sizeable difference between the calculated critical speed and the actual speed at which side impact phenomena will repeatedly occur between wheel flange and rail (running speed limit), such impact speed being remarkably lower than calculated.

Another typical experimental aspect is that the running speed limit will considerably vary for the same vehicle depending on the test track conditions. Such difference is usually attributed to alterations of the wheel-rail contact surfaces, only.

This paper will discuss some concurrent causes which may prove far from negligible, such as the effects of track defects, an amplification of the dynamic lateral displacement between wheel and rail on approaching the critical speed, the track mechanical properties, and in particular the track lateral rigidity.

The influence of some geometrical factors typical of the wheel-rail contact, such as side clearance and linearized conicity, will also be discussed. The approach is based on the application of statistical methods to dynamic linear systems.  相似文献   

8.
The lateral vehicle dynamics is defined by the effects of side forces at the front and rear axle. These forces are caused by the slip and camber angle at the individual tyres, which are results of the kinematics and compliances of the chassis. This paper extends the approach of the effective axle characteristics by Paceyka to the analytical expression of the axle cornering stiffness and the axle relaxation behaviour with the aim of the development of a chassis design process as it applies in the early design stage. The obtained expression is integrated into a single track model and validated against a full nonlinear two-track model. By this means of these analytical expressions for the axle cornering stiffness and the axle relaxation behaviour it is possible to directly calculate and analyse the effective slip angles for linear quasi-static and dynamic driving manoeuvres.  相似文献   

9.
Off-Road Vehicle Dynamics   总被引:1,自引:0,他引:1  
Recent developments in off-road vehicle dynamics are reviewed. Progress on this topic and the application of new techniques to the particular problemsassociated with off-road operation tend to lag behind practices established for road vehicles.

The factor which limits further progress is the lack ofappropriate off-road tyre data, in particular, on vibrational and lateral force generation characteristics. Also, a long term study should be aimed at understanding the dynamic behaviour of tyres on yielding surfaces.  相似文献   

10.
McPherson suspension modelling poses a challenging problem due to its nonlinear asymmetric behaviour. The paper proposes a planar quarter-car analytical model that not only considers vertical motion of the sprung mass (chassis) but also: (i) rotation and translation for the unsprung mass (wheel assembly), (ii) wheel mass and its inertia moment about the longitudinal axis, and (iii) tyre damping and lateral deflection. This kinematic–dynamic model offers a solution to two important shortcomings of the conventional quarter-car model: it accounts for geometry and for tyre modelling. The paper offers a systematic development of the planar model as well as the complete set of mathematical equations. This analytical model can be suitable for fast computation in hardware-in-the-loop applications. Furthermore, a reproducible Simulink implementation is given. The model has been compared with a realistic Adams/View simulation to analyse dynamic behaviour for the jounce and rebound motion of the wheel and two relevant kinematic parameters: camber angle and track width variation.  相似文献   

11.
Based on Chinese No. 12 high speed, single-way swing nose rail concrete sleeper turnout, a comprehensive vehicle/turnout system coupling dynamic model has been established in this paper, and the lateral and vertical dynamic characteristics of vehicle/turnout systems have been simulated while the car passes through the turnout zone on divergence. These dynamic characteristics show that the lateral impact and vibration of the systems caused by the wheel/rail contact and irregularity are very intensive, especially at the switch zone and nose area of the turnout, and the lateral dynamics of the turnout system, such as lateral stability, vibrating responses, impacting and the allowable passing velocity force between the wheelsets and the switch rails are much more complicated than that of the vertical ones.  相似文献   

12.
Based on Chinese No. 12 high speed, single-way swing nose rail concrete sleeper turnout, a comprehensive vehicle/turnout system coupling dynamic model has been established in this paper, and the lateral and vertical dynamic characteristics of vehicle/turnout systems have been simulated while the car passes through the turnout zone on divergence. These dynamic characteristics show that the lateral impact and vibration of the systems caused by the wheel/rail contact and irregularity are very intensive, especially at the switch zone and nose area of the turnout, and the lateral dynamics of the turnout system, such as lateral stability, vibrating responses, impacting and the allowable passing velocity force between the wheelsets and the switch rails are much more complicated than that of the vertical ones.  相似文献   

13.
In this paper, vehicle stability control and fuel economy for a 4-wheel-drive hybrid vehicle are investigated. The integrated controller is designed within three layers. The first layer determines the total yaw moment and total lateral force made by using an optimal controller method to follow the desired dynamic behaviour of a vehicle. The second layer determines optimum tyre force distribution in order to optimise tyre usage and find out how the tyres should share longitudinal and lateral forces to achieve a target vehicle response under the assumption that all four wheels can be independently steered, driven, and braked. In the third layer, the active steering, wheel slip, and electrical motor torque controllers are designed. In the front axle, internal combustion engine (ICE) is coupled to an electric motor (EM). The control strategy has to determine the power distribution between ICE and EM to minimise fuel consumption and allowing the vehicle to be charge sustaining. Finally, simulations performed in MATLAB/SIMULINK environment show that the proposed structure could enhance the vehicle stability and fuel economy in different manoeuvres.  相似文献   

14.
This article suggests a new methodology for the objective assessment and quantification of the response of a vehicle subjected to transient-handling manoeuvres. For this purpose, a non-dimensional measure is defined, namely the normalized yaw impulse. This measure appears in two variations. In its general or dynamic form, it represents the difference between the yaw moment due to the front-tyre forces and the yaw moment due to the rear-tyre forces, divided by the sum of the aforementioned yaw moments. By employing a linear, two-degree-of-freedom bicycle model, it is shown that the general form of the normalized yaw impulse can be written as a function of the steer angle and the forward, lateral and yaw velocities of the vehicle. This form is referred to as the kinematic yaw impulse. It is demonstrated that the combined application of the dynamic and kinematic expressions of the yaw impulse not only facilitates the explicit assessment and quantification of the transient behaviour of a vehicle, but also reveals the influence of parameters such as the yaw moment of inertia, which traditionally leave the steady-state behaviour unaffected.  相似文献   

15.
This article suggests a new methodology for the objective assessment and quantification of the response of a vehicle subjected to transient-handling manoeuvres. For this purpose, a non-dimensional measure is defined, namely the normalized yaw impulse. This measure appears in two variations. In its general or dynamic form, it represents the difference between the yaw moment due to the front-tyre forces and the yaw moment due to the rear-tyre forces, divided by the sum of the aforementioned yaw moments. By employing a linear, two-degree-of-freedom bicycle model, it is shown that the general form of the normalized yaw impulse can be written as a function of the steer angle and the forward, lateral and yaw velocities of the vehicle. This form is referred to as the kinematic yaw impulse. It is demonstrated that the combined application of the dynamic and kinematic expressions of the yaw impulse not only facilitates the explicit assessment and quantification of the transient behaviour of a vehicle, but also reveals the influence of parameters such as the yaw moment of inertia, which traditionally leave the steady-state behaviour unaffected.  相似文献   

16.
The theoretical development of the lateral dynamics of railway vehicles has made rapid strides in recent years and many of the instabilities arising from the geometry of the wheel-rail interface and the forces acting in the contact area are now understood. In addition methods of analysis of curving and dynamic response to track irregularities have been developed and validated by experiment. This paper reviews the present status of equations of motion, limit cycle solutions for hunting oscillations and the relationship of stability to behaviour in curves.  相似文献   

17.
A sensitivity analysis has been performed to assess the influence of the inertial properties of railway vehicles on their dynamic behaviour. To do this, 216 dynamic simulations were performed modifying, one at a time, the masses, moments of inertia and heights of the centre of gravity of the carbody, the bogie and the wheelset. Three values were assigned to each parameter, corresponding to the percentiles 10, 50 and 90 of a data set stored in a database of railway vehicles. After processing the results of these simulations, the analysed parameters were sorted by increasing influence. It was also found which of these parameters could be estimated with a lesser degree of accuracy for future simulations without appreciably affecting the simulation results. In general terms, it was concluded that the most sensitive inertial properties are the mass and the vertical moment of inertia, and the least sensitive ones the longitudinal and lateral moments of inertia.  相似文献   

18.
The theory of crosswind feedforward control was explained using the example of a vehicle with active front-wheel steering. Beforehand, the calculation formulas and frequency responses of the transient crosswind force and of the wind yaw moment acting on the vehicle were derived using the example of a simple vehicle fluid model. The influence of the transiency of crosswind disturbance on the dynamic crosswind behaviour of a vehicle was then presented. The results of simulation confirmed the analyses carried out in the frequency domain for feedforward control with front, rear and all-wheel steering. With front-wheel steering, the influence of crosswind on one of the vehicle movement variables (lateral acceleration or yaw rate) could be almost completely compensated by dynamic feedforward control. With rear-wheel steering, it is only possible to compensate directly for the influence on the yawing rate. Due to the setting of the side force in the same direction as the lateral wind force at the start, active rear-wheel steering is not so successful as active front-wheel steering. Nevertheless, the crosswind behaviour of a vehicle can be considerably enhanced by feedforward control with rear-wheel steering. The best crosswind behaviour was obtained with active all-wheel steering: the vehicle hardly responds at all to crosswinds and remains on course despite heavy gusts of wind.  相似文献   

19.
An extension to the LuGre dynamic friction model from longitudinal to longitudinal/lateral motion is developed in this paper. Application of this model to a tyre yields a pair of partial differential equations that model the tyre-road contact forces and aligning moment. A comparison of the steady-state behaviour of the dynamic model with existing static tyre friction models is presented. This comparison allows one to determine realistic values of the parameters for the new dynamic model. Via the introduction of a set of mean states we reduce the partial differential equations to a lumped model governed by a set of three ordinary differential equations. Such a lumped form describes the aggregate effect of the friction forces and moments and it can be useful for control design and online estimation. A method to incorporate wheel rim rotation is also proposed. The proposed model is evaluated by comparing both its steady-state as well as its dynamic characteristics via numerical simulations. The results of the simulations corroborate steady-state and dynamic/transient tyre characteristics found in the literature.  相似文献   

20.
ABSTRACT

This paper presents state-of-the art within advanced vehicle dynamics of heavy trucks with the perspective of road safety. The most common accidents with heavy trucks involved are truck against passenger cars. Safety critical situations are for example loss of control (such as rollover and lateral stability) and a majority of these occur during speed when cornering. Other critical situations are avoidance manoeuvre and road edge recovery. The dynamic behaviour of heavy trucks have significant differences compared to passenger cars and as a consequence, successful application of vehicle dynamic functions for enhanced safety of trucks might differ from the functions in passenger cars. Here, the differences between vehicle dynamics of heavy trucks and passenger cars are clarified. Advanced vehicle dynamics solutions with the perspective of road safety of trucks are presented, beginning with the topic vehicle stability, followed by the steering system, the braking system and driver assistance systems that differ in some way from that of passenger cars as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号