首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A coupled 1D physical–biogeochemical model has been built to simulate the cycles of silicon and of nitrogen in the Indian sector of the Permanently Open Ocean Zone of the Southern Ocean. Based on a simplified trophic network, that includes two size classes of phytoplankton and of zooplankton, and a microbial loop, it has been calibrated by reference to surface physical, chemical and biological data sets collected at the KERFIX time-series station (50°40′S–68°25′E). The model correctly reproduces the high nutrient low chlorophyll features typical of the studied area. In a region where the spring–summer mixed layer depth is usually deeper than 60 m, the maximum of chlorophyll never exceeds 1.5 mg m−3, and the annual primary production is only 68 g C m−2 year−1. In the surface layer nitrate is never exhausted (range 27–23.5 mmoles m−3) while silicic acid shows strong seasonal variations (range 5–20 mmoles m−3). On an annual basis 71% of the primary production sustained by nanophytoplankton is grazed by microzooplankton. Compared to North Atlantic, siliceous microphytoplankton is mainly prevented from blooming because of an unfavourable spring–summer light-mixing regime. Silicic acid limitation (high half saturation constant for Si uptake: 8 mmoles m−3) also plays a major role on diatom growth. Mesozooplankton grazing pressure excerpts its influence especially in late spring. The model illustrates the efficiency of the silica pump in the Southern Ocean: up to 63% of the biogenic silica that has been synthetized in the photic layer is exported towards the deep ocean, while only 11% of the particulate organic nitrogen escapes recycling in the surface layer.  相似文献   

2.
Dissolved and particulate phases of carbon (DIC, DOC, POC) and nutrients (DIN, DIP, DSi, DON, DOP, PN) were investigated bimonthly from August 1999 to August 2000 to study biogeochemical dynamics of carbon and nutrients in Tapong Bay, a small semi-enclosed and hypertrophic lagoon in southwestern Taiwan. The lagoon has only a tidal inlet for exchanging water between Tapong Bay and Taiwan Strait, which may result in low water exchange rates and various oxygen-deficient conditions in bottom water of the inner bay during warm seasons. The water exchange time of Tapong Bay ranges from 7 days (summer) to 13 days (winter) with a mean of 10 days. Nutrient dynamics were largely ascribed to allochthonous inputs, biological and exported removals in the lagoon. Diffusion fluxes from sediments to overlying water accounted for only about 7.6% of annual DIN inputs and 1.0% of annual DIP inputs. High primary productivity (89 mol C m−2 year−1) supported by abundant nutrients primarily drove the lagoon into a hypertrophic condition as particulate organic matter was derived mainly from biological production. Excess of DIP appeared to occur throughout the study period in the lagoon. Temperature, solar radiation and turbidity, rather than nutrients, perhaps controlled seasonal variations of primary productivity. The net ecosystem production (NEP) derived from daily changes of DOC and POC inventories was about 6.3 mmol C m−2 day−1 that was close to 6.7 mmol C m−2 day−1 simulated from the biogeochemical modeling. Therefore, the net ecosystem production (NEP) rate of organic carbon estimated from the biogeochemical model was reliable, and the NEP was temporally variable with an annual mean of 5.8 mol C m−2 year−1, implying that Tapong Bay was an autotrophic system. Although calcification proceeded pronouncedly in warm seasons, an invasion of CO2 was significant in this system. In terms of nitrogen budget, the annual nitrogen fixation exceeded the annual denitrification with a magnitude of 1.30 mol N m−2 year−1, which may be supported by the abundance of nitrogen fixation microplanktons in the lagoon.  相似文献   

3.
Organic carbon budget for the Gulf of Bothnia   总被引:1,自引:0,他引:1  
We calculated input of organic carbon to the unproductive, brackish water basin of the Gulf of Bothnia from rivers, point sources and the atmosphere. We also calculated the net exchange of organic carbon between the Gulf of Bothnia and the adjacent marine system, the Baltic Proper. We compared the input with sinks for organic carbon; permanent incorporation in sediments and mineralization and subsequent evasion of CO2 to the atmosphere. The major fluxes were riverine input (1500 Gg C year− 1), exchange with the Baltic Proper (depending on which of several possible DOC concentration differences between the basins that was used in the calculation, the flux varied between an outflow of 466 and an input of 950 Gg C year 1), sediment burial (1100 Gg C year− 1) and evasion to the atmosphere (3610 Gg C year− 1). The largest single net flux was the emission of CO2 to the atmosphere, mainly caused by bacterial mineralization of organic carbon. Input and output did not match in our budget which we ascribe uncertainties in the calculation of the exchange of organic carbon between the Gulf of Bothnia and the Baltic Proper, and the fact that CO2 emission, which in our calculation represented 1 year (2002) may have been overestimated in comparison with long-term means. We conclude that net heterotrophy of the Gulf of Bothnia was due to input of organic carbon from both the catchment and from the Baltic Proper and that the future degree of net heterotrophy will be sensible to both catchment export of organic carbon and to the ongoing eutrophication of the Baltic Proper.  相似文献   

4.
Globally significant quantities of organic carbon are stored in northern permafrost soils, but little is known about how this carbon is processed by microbial communities once it enters rivers and is transported to the coastal Arctic Ocean. As part of the Arctic River-Delta Experiment (ARDEX), we measured environmental and microbiological variables along a 300 km transect in the Mackenzie River and coastal Beaufort Sea, in July–August 2004. Surface bacterial concentrations averaged 6.7 × 105 cells mL− 1 with no significant differences between sampling zones. Picocyanobacteria were abundant in the river, and mostly observed as cell colonies. Their concentrations in the surface waters decreased across the salinity gradient, dropping from 51,000 (river) to 30 (sea) cells mL− 1. There were accompanying shifts in protist community structure, from diatoms, cryptophytes, heterotrophic protists and chrysophytes in the river, to dinoflagellates, prymnesiophytes, chrysophytes, prasinophytes, diatoms and heterotrophic protists in the Beaufort Sea.Size-fractionated bacterial production, as measured by 3H–leucine uptake, varied from 76 to 416 ng C L− 1 h− 1. The contribution of particle-attached bacteria (> 3 µm fraction) to total bacterial production decreased from > 90% at the Mackenzie River stations to < 20% at an offshore marine site, and the relative importance of this particle-based fraction was inversely correlated with salinity and positively correlated with particulate organic carbon concentrations. Glucose enrichment experiments indicated that bacterial metabolism was carbon limited in the Mackenzie River but not in the coastal ocean. Prior exposure of water samples to full sunlight increased the biolability of dissolved organic carbon (DOC) in the Mackenzie River but decreased it in the Beaufort Sea.Estimated depth-integrated bacterial respiration rates in the Mackenzie River were higher than depth-integrated primary production rates, while at the marine stations bacterial respiration rates were near or below the integrated primary production rates. Consistent with these results, PCO2 measurements showed surface water supersaturation in the river (mean of 146% of air equilibrium values) and subsaturation or near-saturation in the coastal sea. These results show a well-developed microbial food web in the Mackenzie River system that will likely convert tundra carbon to atmospheric CO2 at increasing rates as the arctic climate continues to warm.  相似文献   

5.
By developing a steady state diagnostic model for a stratified deep-water mass, one is able to quantify both the mass flows and apparent oxygen removal in the Baltic proper deep water. The model is based on continuity of the assumed conservative observable volume, salinity and temperature. Second degree polynomials are fitted to observed vertical profiles of temperature as well as oxygen concentration to give a functional correspondence with the used spatial variable salinity. These relations are used in the model that calculate the water flows, oxygen flows and oxygen removal during four periods between 1959 and 1997. The model forms a boundary value problem, which is solved with a finite difference scheme. The model seems to give reasonable estimates of the flows. The oxygen removal is mainly balanced by inflow of oxygen with incoming water. The oxygen consumption is 4–8 μl O2 l−1 day−1, which corresponds to a degradation of organic matter in the range 30–60 g C m−2 year−1.  相似文献   

6.
The upper water column in the Irminger Sea is characterized by cold fresh arctic and subarctic waters and warm saline North Atlantic waters. In this study the local physical and meteorological preconditioning of the phytoplankton development over an annual cycle in the upper water column in four physical zones of the Irminger Sea is investigated. Data from four cruises of the UK's Marine Productivity programme are combined with results from a coupled biological–physical nitrogen–phytoplankton–zooplankton–detritus model run using realistic forcing. The observations and model predictions are compared and analyzed to identify the key parameters and processes which determine the observed heterogeneity in biological production in the Irminger Sea. The simulations show differences in the onset of the bloom, in the time of the occurrence of the maximum phytoplankton biomass and in the length of the bloom between the zones. The longest phytoplankton bloom of 90 days duration was predicted for the East Greenland Current of Atlantic origin zone. In contrast, for the Central Irminger Sea zone a phytoplankton bloom with a start at the beginning of May and the shortest duration of only 70 days was simulated. The latest onset of the phytoplankton bloom in mid May and the latest occurrence of the maximum biomass (end of July) were predicted for the Northern Irminger Current zone. Here the bloom lasted for 80 days. In contrast the phytoplankton bloom in the Southern Irminger Current zone started at the same time as in Central Irminger Sea, but peaked end of June and lasted for 80 days. For all four zones relatively low daily (0.3–0.5 g C m− 2d− 1) and annual primary production was simulated, ranging between 35.6 g C m− 2y− 1 in the East Greenland Current of Atlantic origin zone and 45.6 g C m− 2y− 1 in the Northern Irminger Current zone. The model successfully simulated the observed regional and spatial differences in terms of the maximum depth of winter mixing, the onset of stratification and the development of the seasonal thermocline, and the differences in biological characteristics between the zones. The initial properties of the water column and the seasonal cycle of physical and meteorological forcing in each of the zones are responsible for the observed differences during the Marine Productivity cruises. The timing of the transition from mixing to stratification regime, and the different prevailing light levels in each zone are identified as the crucial processes/parameters for the understanding of the dynamics of the pelagic ecosystem in the Irminger Sea.  相似文献   

7.
The potential for carbon export and the role of siliceous plankton in the cycling of C and N was assessed in natural plankton assemblages in the Santa Barbara Basin, California, by examining uptake rates of inorganic carbon, nitrate and silicic acid. In April–August 1997, the concentrations of chlorophyll a, particulate organic carbon, particulate organic nitrogen and biogenic silica were measured twice monthly, and results revealed the occurrence of at least three blooms, the largest in June. Particulate elemental ratios of C, N and Si were similar to ratios of nutrient-replete diatoms, suggesting that they dominated this bloom. Mean integrated rates of carbon, nitrate and silicon uptake during the 4-month study period are similar to other productive coastal and upwelling regions (103, 8.3 and 13 mmol m−2 day−1, respectively). New production rates were twice as high as previously reported in this region and indicate that high rates of new production along eastern boundary currents are not confined to the major coastal upwelling regions. C/NO3, Si/NO3 and Si/C uptake ratios varied widely, and mean integrated ratios were 14±5.4, 1.6±1.0 and 0.12±0.07 (S.D.), respectively. That mean C/NO3 uptake ratio corresponds to an f-ratio of about 0.5 indicating a large potential for particulate export. Based on the average Si/NO3 and Si/C uptake ratios, diatoms could perform all of the primary production and nitrate uptake that occurred during the study; these rates also suggest that export is controlled by diatoms in this system. The mean Si/C biomass ratio was lower than the mean Si/C uptake ratio, consistent with the preferential export of Si relative to C observed in sediment traps in the basin. The study took place during a period of surface-water warming, with nitrate and silicic acid concentrations decreasing throughout the onset of the 1997–1998 El Niño conditions. Although diatoms contributed less to particulate biomass during the low nutrient conditions, high f-ratios (0.33–0.66) were maintained.  相似文献   

8.
Production of the marine calanoid copepod Acartia omorii was measured from 2 October 1991 to 8 October 1992 at a station in Ilkwang Bay on the southeastern coast of Korea. A. omorii (nauplii + copepodites + adults) were present in the plankton throughout the year, with seasonal variation in abundance. Biomass of A. omorii was averaged at 0.44 mgC m− 3, with peaks in February and July, and relatively low biomass in late summer and fall. Egg production rate ranged from 2.4 to 151.9 μgC m− 3 day− 1, which was equivalent to 95–6075 eggs m− 3 day− 1. Fecundity of an adult female was averaged at 38 eggs female− 1 day− 1. Instantaneous growth rates of copepodites were higher than those of nauplii stages. Annual production of A. omorii ranged from 33.5 mgC m− 3 year− 1 to 221 mgC m− 2 year− 1, showing a seasonal variation of daily production rate with peaks in February and July. The daily production rate of A. omorii was significantly correlated with chlorophyll a concentration. These results suggest that standing stocks and/or productivity of phytoplankton are the major influencing factors, rather than water temperature for the seasonal variation of production of A. omorii in Ilkwang Bay.  相似文献   

9.
Sediment community metabolism (oxygen demand) was measured in the Northeast Water (NEW) polynya off Greenland employing two methods: in situ benthic chambers deployed with a benthic (GOMEX) lander and shipboard laboratory Batch Micro-Incubation Chambers (BMICs) utilizing ‘cores’ recovered from USNEL box cores. The mean benthic respiration rate measured with the lander was 0.057 mM O2 m−2 h−1 (n = 5); whereas the mean measured with the BMICs was 0.11 mM O2 m−2 h−1 (n = 21; p < 0.01 that the means were the same). In terms of carbon fluxes (14 and 27 mg C m−2 d−1), these respiration rates represent ca. 5–15% of the average net primary production measured in the euphotic zone in 1992. The biomass of the bacteria, meiofauna and macrofauna were measured at each location to quantify the relationship between total community respiration and total community biomass (mean 1.42 g C m−2). Average carbon residence time in the biota, calculated by dividing the biomass by the respiration, was on the order of 50–100 days, which is comparable to relatively oligotrophic continental margins at temperate latitudes.The biomass and respiration data for the aerobic heterotrophic bacteria, the infaunal invertebrates (meiofauna and macrofauna), and the epifaunal megabenthos (two species of brittle stars) are summarized in a ‘steady-state’ solution of a sediment food chain model, in terms of carbon. This carbon budget illustrates the relative importance of the sediment-dwelling invertebrates in the benthic subsystem, compared to the bacteria and the epibenthos, during the summer open-water period in mud-lined troughs at depths of about 300 m. The input needed to drive heterotrophic respiratory processes was within the range of the input of organic matter recorded in moored, time-sequencing sediment traps.A time-dependent numerical simulation of the model was run to investigate the potential responses of the three size groups of benthos to abrupt seasonal pulses of particulate organic matter. The model suggests that there is a time lag in the increase in bottom community biomass and respiration following the POC pulse, and provides hypothetical estimates for the potential carbon storage in the summer (open water), followed by catabolic losses during each ensuing winter (ice covered).This sequence of storage and respiration may contribute to the process of seasonal CO2 ‘rectification’ (sensu Yager et al., 1995) in some Arctic ecosystems.  相似文献   

10.
Phytoplankton, bacteria and microzooplankton were investigated on a transect in the Bellingshausen Sea during the ice melt period in November–December 1992. The transect along the 85°W meridian comprised seven stations that progressed from solid pack-ice (70°S), through melting ice into open water (67°S). The abundance, biomass and taxonomic composition were determined for each component of the microbial community. The phytoplankton was mostly dominated by diatoms, particularly small (<20 μm) species. Diatom abundance ranged from 66 000 cells l−1 under the ice to 410 000 cells l−1 in open water. Phytoplankton biomass varied from <1 to 167 mg C m−3, with diatoms comprising 89–95% of the total biomass in open water and autotrophic nanoflagellates comprising 57% under the ice. The standing stocks of autotrophs in the mixed layer ranged from 95 mg C m−2 under the pack-ice to 9478 mg C m−2 in open waters. Bacterial abundance in ice-covered and open water stations varied from 1.1 to 5.5×108 cells l−1. Bacterial biomass ranged from 2.4 mg C m−3 under pack-ice to an average of 14 mg C m−3 in open water. The microzooplankton consisted mainly of aloricate oligotrich ciliates and heterotrophic dinoflagellates and these were most abundant in open waters. Their biomass varied between 0.2 and 54 mg C m−3 with a minimum at depth under the ice and maximum in open surface waters. Microheterotrophic standing stocks varied between 396 mg C m−2 under pack-ice and 3677 mg C m−2 in the open waters. The standing stocks of the total microbial community increased consistently from 491 mg C m−2 at the ice station to 13 155 mg C m−2 in open waters, reflecting the productive response of the community to ice-melt. The composition of the microbial community also shifted markedly from one dominated by heterotrophs (82% of microbial stocks) at the ice station to one dominated by autotrophs (73% of microbial stocks) in the open water. Our estimates suggest that the microbial community comprised >100% of the total particulate organic carbon (POC) under the ice and 62–66% of the measured POC in the open waters.  相似文献   

11.
The diffusive and in situ fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA) have been measured and an estimation has been made of the water–atmosphere fluxes of CO2 in three estuarine systems of the Cantabrian Sea during the spring of 1998. Each of these systems undergoes a different anthropogenic influence. The diffusive fluxes of dissolved inorganic carbon and total alkalinity obtained present values ranging between 0.54–2.65 and 0.0–2.4 mmol m−2 day−1, respectively. These ranges are in agreement with those of other coastal systems. The in situ fluxes are high and extremely variable (35–284 mmol TA m−2 day−1, 43–554 mmol DIC m−2 day−1 and 22–261 mmol dissolved oxygen (DO) m−2 day−1), because the systems studied are very heterogeneous. The values of the ratio of the in situ fluxes of TA and DIC show on average that the rate of dissolution of CaCO3 is 0.37 times that of organic carbon oxidation. Equally, the interval of variation of the relationship between the benthic fluxes of inorganic carbon and oxygen (FDIC/FDO) is very wide (0.3–13.9), which demonstrates the different contributions made by the processes of aerobic and anaerobic degradation of the organic matter, as well as by the dissolution–precipitation of CaCO3. The water–atmosphere fluxes of CO2 present a clear dependence on the salinity. The brackish water of these systems (salinity<20), where maximum fluxes of 989 mmol m−2 day−1 have been estimated, act as a source of CO2 to the atmosphere. The more saline zones of the estuary (salinity>30) act as a sink of CO2, with fluxes between −5 and −10 mmol m−2 day−1.  相似文献   

12.
Production and transfer of lipid through the Antarctic food web is reviewed for the Indian Ocean sector. The slow settling fine particles showed a marked inter-annual variability in biochemical composition with an increase in lipid content as % organic carbon. Comparison of the fatty acid spectra of different size categories of organic particles indicated that fine particles are dominated by saturated, monoenoic and branched acids, while larger material (50–100 μm, 200–500 μm net collected fractions) displayed a signature dominated by polyunsaturated acids. Zooplankton taxa displayed different strategies of lipid accumulation. Lipid content was highest in Thysanoessa macrura females and copepodite stages of Calanus propinquus. Relatively low levels were recorded for juveniles and male stages of euphausiids. Reserve lipids varied with species: C. propinquus showed equal content of triglycerides and wax esters, T. macrura showed a dominance of wax esters and Euphausia superba and Themisto gaudichaudii accumulated only triglycerides. Computed as carbon equivalent and integrated over 200 m, lipids in slow settling particles represented 22.6% of annual primary production. Similar computation with mesozooplankton and E. superba data on biomass and population structure from several summer cruises indicated values of carbon accumulation as lipid reserves and egg production of 4.2 and 0.1% of annual primary production for copepods and 4.4 and 3.8% for E. superba. When all trophic levels are considered, the overall mean exceeded 30% of annual primary production.  相似文献   

13.
The separation in Southern Ocean provinces of silicate excess at nitrate exhaustion and of nitrate excess at silicate exhaustion was already introduced by Kamykowski and Zentara (Kamykowski, D., Zentara, S.J., 1985. Nitrate and silicic acid in the world ocean: patterns and processes. Mar. Ecol. Prog. Ser. 26, 47–59; and Kamykowski, D., Zentara, S.J., 1989. Circumpolar plant nutrient covariation in the Southern Ocean: patterns and processes. Mar. Ecol. Prog. Ser. 58, 101–111) and our investigations of the silicate to nitrate uptake ratios confirm the earlier distinction. Oligotrophic antarctic waters mainly exhibit proportionally higher silicate removal what induces a potential for nitrate excess. The nitrogen uptake regime of such areas is characterised by low absolute as well as specific nitrate uptake rates throughout. Maximal values did not exceed 0.15 μM d−1 and 0.005 h−1, respectively. Corresponding f-ratios ranged from 0.39 to 0.86. This scenario contrasts strikingly to the more fertile ice edge areas. They showed a drastic but short vernal increase in nitrate uptake. Absolute uptake rates reached a maximum value of 2.18 μM d−1 whereas the maximal specific uptake rate was 0.063 h−1. In addition to an optimal physical environment for bloom development, accumulation of ammonium stimulated nitrate uptake in a direct or indirect way. Since ammonium build-up in surface waters traces enhanced remineralisation, release of other essential compounds during degradation of organic matter might have been the main trigger. This peak nitrate utilisation during early spring led to the observed potential for silicate excess. With increasing seasonal maturity the nitrate uptake became inhibited by the presence of enhanced ammonium availability (up to 8% of the inorganic nitrogen pool), however, and after a short period of intensive nitrate consumption the uptake rates drop to very low levels, which are comparable to the ones observed in the area of nitrate excess at silicate exhaustion.  相似文献   

14.
A major objective of the Palmer Long Term Ecological Research (Palmer LTER) project is to obtain a comprehensive understanding of the various components of the Antarctic marine ecosystem. Phytoplankton production plays a key role in this so-called high nutrient, low chlorophyll environment, and factors that regulate production include those that control cell growth (light, temperature, and nutrients) and those that control cell accumulation rate and hence population growth (water column stability, grazing, and sinking). Sea ice mediates several of these factors and frequently conditions the water column for a spring bloom which is characterized by a pulse of production restricted in both time and space. This study models the spatial and temporal variability of primary production within the Palmer LTER area west of the Antarctic Peninsula and discusses this production in the context of historical data for the Southern Ocean. Primary production for the Southern Ocean and the Palmer LTER area have been computed using both light-pigment production models [Smith, R.C., Bidigare, R.R., Prézelin, B.B., Baker, K.S., Brooks, J.M., 1987. Optical characterization of primary productivity across a coastal front. Mar. Biol. (96), 575–591; Bidigare, R.R., Smith, R.C., Baker, K.S., Marra, J., 1987. Oceanic primary production estimates from measurements of spectral irradiance and pigment concentrations. Global Biogeochem. Cycles (1), 171–186; Morel, A., Berthon, J.F., 1989. Surface pigments, algal biomass profiles and potential production of the euphotic layer—relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr. (34), 1545–1562] and an ice edge production model [Nelson, D.M., Smith, W.O., 1986. Phytoplankton bloom dynamics of the western Ross Sea ice edge: II. Mesoscale cycling of nitrogen and silicon. Deep-Sea Res. (33), 1389–1412; Wilson, D.L., Smith, W.O., Nelson, D.M., 1986. Phytoplankton bloom dynamics of the Western Ross Sea ice edge: I. primary productivity and species-specific production. Deep-Sea Res., 33, 1375–1387; Smith, W.O., Nelson, D.M., 1986. Importance of ice edge phytoplankton production in the Southern Ocean. BioScience (36), 251–257]. Chlorophyll concentrations, total photosynthetically available radiation (PAR) and sea ice concentrations were derived from satellite data. These same parameters, in addition to hydrodynamic conditions, have also been determined from shipboard and Palmer Station observations during the LTER program. Model results are compared, sensitivity studies evaluated, and productivity of the Palmer LTER region is discussed in terms of its space time distribution, seasonal and interannual variability, and overall contribution to the marine ecology of the Southern Ocean.  相似文献   

15.
Primary production events in both the Arctic and the Antarctic are highly localized. Carbon-14 incubations that did not account for this caused antarctic primary production estimates to be revised too far downwards from the historic view of high productivity. The primary production regime in the Arctic is even more heterogeneous than in the Antarctic. Arctic primary production rates are in the process of being revised upwards because of a better spatial and temporal distribution of incubation experiments and a re-awakening of interest in estimating new production from the distribution of chemical variables. Similarly, recent examination of temporal changes in nitrate concentrations and recognition of the importance of ice-edge blooms has caused antarctic primary productivity to be revised upwards. In both the Arctic and the Antarctic, the ratio of “new” to total primary production is high, and neglect of this fact can lead to an underestimation of the potential that these regions have for influencing global cycles of bioactive chemicals. Some recent data on temporal changes in nitrate from Fram Strait emphasize the poor state of our knowledge by suggesting an unexpectedly high “new” production rate of 1 g C m−2 d−1 for a 35 day experiment that encountered an early Phaeocystis bloom. Chemical distributions suggest that new production over the shelf seas that border the Polar Basin is about 50 g Cm−2 yr−1.The shelves in the Arctic Ocean's marginal and adjacent seas comprise 25% of the total global continental shelf. These extensive shallow regions have much higher rates of primary production than the Polar Basin and may be globally significant sites of denitrification. Globally significant silica deposition could occur on these shelves or on the adjacent slopes.Because of the differences in geomorphology and stratification, global warming is likely to increase primary production in the Arctic and will probably decrease antarctic primary production.In addition to sharing high ratios of “new” to total primary production, high ammonium concentrations occur in the Arctic and Antarctic. It is possible that these accumulations arise from a strong repression of nitrification at low temperatures.  相似文献   

16.
A new method to calculate the anthropogenic CO2 (ΔDICant) within the water column of the North Atlantic Ocean is presented. The method exploits the equilibrium chemistry of the carbonate system with reference to temperature, salinity and the partial pressure of atmospheric CO2 (pCO2,atm). ΔDICant is calculated with reference to the ventilation ages of water masses derived from tracer data and to the time history of pCO2,atm. The method is applied to data recorded during the WOCE program on the WHP A1/E transect in the North Atlantic Ocean, where we characterise six key water masses by their relationships of dissolved inorganic carbon (DIC) and apparent oxygen utilisation (AOU). The error in determining ΔDICant is reduced significantly by minimising the number of values referred to, especially by avoiding any use of remineralisation ratios of particulate organic matter. The distribution of ΔDICant shows highest values of up to 45 μmol kg−1 in the surface waters falling to 28–33 μmol kg−1 in the Irminger Sea west of the Mid-Atlantic Ridge. The eastern basin is imprinted by older water masses revealing decreasing values down to 10 μmol kg−1 ΔDICant in the Antarctic Bottom Water. These findings indicate the penetration of the whole water column of the North Atlantic Ocean by anthropogenic CO2.  相似文献   

17.
A carbon budget for the exchange of total dissolved inorganic carbon CT between the Greenland Sea and the surrounding seas has been constructed for winter and summer situations. An extensive data set of CT collected over the years 1994–1997 within the European Sub-polar Ocean Programmes (ESOP1 and ESOP2) are used for the budget calculation. Based on these data, mean values of CT in eight different boxes representing the inflow and outflow of water through the boundaries of the Greenland Sea Basin are estimated. The obtained values are then combined with simulated water transports taken from the ESOP2 version of the Miami Isopycnic Coordinate Ocean Model (MICOM). The fluxes of inorganic carbon are presented for three layers; a surface mixed layer, an intermediate layer and a deep layer, and the imbalance in the fluxes are attributed to air–sea exchange, biological fixation of inorganic carbon, and sedimentation. The main influx of carbon is found in the surface and the deep layers in the Fram Strait, and in the surface waters of direct Atlantic origin, whereas the main outflux is found in the surface layer over the Jan Mayen Fracture Zone and the Knipovich Ridge, transporting carbon into the Atlantic Ocean via the Denmark Strait and towards the Arctic Ocean via the Norwegian Sea, respectively. The flux calculation indicates that there is a net transport of carbon out of the Greenland Sea during wintertime. In the absence of biological activity, this imbalance is attributed to air sea exchange, and requires an oceanic uptake of CO2 of 0.024±0.006 Gt C yr−1. The flux calculations from the summer period are complicated by biological fixation of inorganic carbon, and show that data on organic carbon is required in order to estimate the air–sea exchange in the area.  相似文献   

18.
Two state-of-the-art techniques were used to assess the impact of organic loading from fish farming in two fjords of Southern Chile, Pillan and Reñihue Fjords. A sediment profile imaging (SPI) camera was deployed and sediment microprofiles (oxygen, H2S, redox and pH) were measured in undisturbed sediment cores collected using a HAPS corer. Four out of seven stations in Pillan Fjord were found to be severely disturbed: SPI images showed azoic conditions (no apparent Redox Potential Discontinuity layer, no evidence of aerobic life form, presence of an uneaten fish food layer, negative OSI scores). These findings were corroborated by very high oxygen consumption rates (700–1200 mmol m− 2 day− 1), H2S concentrations increasing quickly within the sediment column and redox potential decreasing towards negative values within a few mm down core. Results for Reñihue Fjord were not so straightforward. SPI images indicated that most of the stations (R3 to R7) presented well-mixed conditions (high apparent RPD layers, presence of infauna, burrows, etc.), but oxygen profiles yielded consumption rates of 230 to 490 mmol m− 2 day− 1 and organic carbon mineralization of 2.16 to 4.53 g C m− 2 day− 1. These latter values were close to the limit of aerobic degradation of organic matter although no visible changes were recorded within the sediment column. In view of our findings, the importance of integrating multidisciplinary methodologies in impact assessment studies was discussed.  相似文献   

19.
The Mississippi River currently delivers approximately 1.82 Tg N year−1 (1.3×1011 mol N year−1) to the northern Gulf of Mexico. This large input dominates the biological processes of the region. The “new” nitrogen from the river stimulates high levels of phytoplankton production which in turn support high rates of bacterial production, protozoan and metazoan grazing, and fisheries production. A portion of the particulate organic matter produced in the pelagic food web sinks out of the euphotic zone where it contributes to high rates of oxygen consumption in the bottom waters of the inner shelf, resulting in the development of an extensive zone of hypoxia each summer. In spite of the significance of this river system to the coastal ocean of the northern gulf, we do not have an adequate understanding of the inputs, processing and ultimate fates of river nitrogen. Here we review available literature on this important system and propose a conceptual model showing how biological processes evolve in the river plume between the point of discharge and the point where plume waters are fully diluted by mixing with oceanic water.  相似文献   

20.
Particulate organic matter (POM), nutrients, chlorophyll-a (CHL) and primary production measurements were performed in the upper layer of three different regions (cyclonic, anticyclonic and frontal+peripherial) of the NE Mediterranean Sea in 1991–1994. Depth profiles of bulk POM exhibited a subsurface maximum, coinciding with the deep chlorophyll maximum (DCM) established near the base of the euphotic zone of the Rhodes cyclone and its periphery, where the nutricline was situated just below the euphotic zone for most of the year. Moreover, the POM peaks were broader and situated at shallower depths in late winter–early spring as compared to its position in the summer–autumn period. Under prolonged winter conditions, as experienced in March 1992, the characteristic POM feature disappeared in the center of the Rhodes cyclone, where the upper layer was entirely occupied by nutrient-rich Levantine deep water. Deep convective processes in the cyclonic gyre led to the formation of vertically uniform POM profiles with low concentrations of particulate organic carbon (POC) (2.1 μM), nitrogen (0.21 μM), total particulate phosphorus (PP) (0.02 μM) and chlorophyll-a (0.5 μg/L) in the euphotic zone. Though the Levantine deep waters ascended up to the surface layer with the nitrate/phosphate molar ratios (28–29) in March 1992, the N/P molar ratio of bulk POM in the upper layer was low as 10–12, indicating luxury consumption of phosphate during algal production. Depth-integrated primary production in the euphotic zone ranged from 38.5 for oligotrophic autumn to 457 mg C m−2 day−1 for moderately mesotrophic cool winter conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号