首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 602 毫秒
1.
研究了在重载列车和高速列车车轮实际使用工况下,轮轨接触应力提高后车轮轮辋内部应力增加对轮辋疲劳裂纹萌生的影响。对普通列车、重载列车、高速列车上实际运用过程中发生辋裂的车轮进行失效分析和研究,结果表明:列车轴重增加和运行速度提高,导致车轮轮辋内部萌生裂纹的"临界夹杂物尺寸"减小,使车轮轮辋中原本处于安全尺寸范围的脆性夹杂物越过"临界夹杂物尺寸"成为疲劳裂纹萌生的主要发源点,最终导致车轮轮辋疲劳裂纹的形成。  相似文献   

2.
以某型铁道车辆装用的3组(20个为1组)车轮(其中,1组车轮的轮辋出现疲劳裂纹,1组车轮的踏面存在剥离掉块,1组车轮运行30万km未出现伤损)为研究对象,采用ASPEX自动扫描电镜系统研究3组车轮轮辋中非金属夹杂物的组成、性质及定量关系,并采用扫描电子显微镜和金相显微镜,研究轮辋疲劳裂纹、踏面剥离的伤损形貌和特征,分析导致轮辋疲劳裂纹和踏面剥离的微观伤损因素。结果表明:辋裂车轮中的非金属夹杂物以脆性夹杂物为主,约占非金属夹杂物总数的85%,并且断口中存在的毫米级脆性氧化物类夹杂物属于冶炼或浇注过程中混入的耐材或熔渣等外来物,这是轮辋疲劳裂纹形成的主要原因;在踏面剥离掉块车轮和未损伤车轮中,塑性非金属夹杂物占绝对多数,分别约占非金属夹杂物总数的84%和93%,踏面剥离掉块车轮的踏面塑性变形层平均厚度约为1mm,为未伤损车轮踏面塑性变形层的10倍,说明踏面塑性变形层的相对变形量较大是导致车轮踏面剥离掉块的主要原因。  相似文献   

3.
李继儒 《铁道车辆》1997,35(8):15-18
针对我国车轮在运用中存在的问题及从车轮轮箍全面动态质量管理系统所获得的大量信息,对危及行车安全的车轮质量问题,如辋裂等作了统计分析,揭示其发生规律。同时,分析造成车轮辋裂的原因,提出了相应的改进措施。  相似文献   

4.
轮对是动车组的关键受力部件,轮对质量直接影响动车组运行安全。近期发现在定期在线检测周期范围内,车轮轮辋内部出现超过安全门限的周向辋裂缺陷。既有动车组车轮故障在线检测系统的探伤模块是表面探伤,仅限于踏面及近表面径向缺陷(10 mm以内),对内部缺陷不敏感。为了保障动车组的运行安全,急需对现有动车组车轮故障在线检测系统进行升级,使动车组列车每次回库时能够进行轮辋周向和径向缺陷的深层次检测。介绍一种对既有动车组车轮故障在线检测系统进行升级的方案。  相似文献   

5.
对一件辋裂车轮进行解剖,对解剖发现的疲劳源Al_2O_3夹杂物进行近似理论计算,以评估在形成裂纹前夹杂物超探当量大小,得出当量大小为直径0.46 mm平底孔,小于其解剖显示尺寸。分别对2个轮辋超探缺陷进行解剖和高频超声C扫描检测,发现缺陷的超探当量大小远小于其实际尺寸。揭示使用脉冲反射法进行超声探伤时误差出现的可能性,提出在车轮生产时采取更加严格的企业内部质量控制标准的建议。  相似文献   

6.
主要介绍车轮轮辋裂纹自动检测系统的组成,超声波探头的装配方式,信号采集、数据处理分析系统的构成及计算机控制处理系统,通过计算机数据处理使车轮轮辋内部出现的裂纹以直观的裂纹图像呈现给操作人员判断。  相似文献   

7.
从最近几年来车轮辋裂故障的类型,总结出辋裂的特点及其规律,分析了造成车轮辋裂的主要因素,钢质不纯、轧制质量不高、线路条件差、制动不当等。据此,提出防止车轮辋裂的措施:提高冶炼质量、加强生产质量监测、检验及跟踪管理。  相似文献   

8.
轮辋裂纹故障扩展源头往往存在于车轮踏面表面以下的一定深度,不易通过检测手段被发现。其发生的规律、扩展方向、扩展速度等因素均具有一定的不确定性,使在线服役车轮的运用存在一定程度的不安全性。本文以出现轮辋裂纹扩展或缺陷的HXD_(3C)型大功率电力机车整体辗钢车轮为样本,通过故障车轮检验与滚动疲劳扩展试验相结合的手段开展轮辋裂纹扩展的相关研究,通过金相检验确认车轮轮辋裂纹的真实原因,通过轮辋裂纹扩展研究试验研究车轮缺陷在试验载荷条件下,随机车运用里程增加的发展规律。研究的结果对存在轮辋裂纹缺陷车轮的安全运用提供一定指导。  相似文献   

9.
通过进行有限元计算和车轮轮辋材料疲劳裂纹扩展试验,研究了货车车轮轮辋裂纹扩展的主要控制因素和扩展规律。结果表明,轮辋深部裂纹尖端Ⅰ型应力强度因子为负值,即裂纹为闭合型;裂纹扩展主要受Ⅱ、Ⅲ型及其复合应力强度因子控制。在Ⅰ型(负值)应力强度因子及裂纹面间的摩擦力共同作用下,裂纹尖端的Ⅱ、Ⅲ型应力强度因子幅值较低,裂纹不易发生偏折或分叉,一般会沿着轮辋踏面切线方向扩展,直至扩展到踏面。  相似文献   

10.
车轮温度和应力的分布对车轮寿命有重大影响。分析轮辋厚度与车轮使用年限、辐板孔裂纹率的关系。采用有限元法模拟长大坡道制动热应力和轮轨机械应力随轮辋厚度变化的规律,建立考虑轮辋厚度的辐板孔裂纹萌生时间预测模型。结果表明:坡道制动工况与机械载荷工况的组合作用是车轮辐板孔边产生高应力的主要因素;车轮辐板孔应力随轮辋厚度的减小而增大;机械应力与热应力叠加是导致辐板孔裂纹萌生的主要原因。预测的疲劳裂纹萌生时间与实际情况比较接近。  相似文献   

11.
通过试验测定了车轮钢Ⅱ型裂纹的疲劳扩展速率、断裂韧性KⅡC和应力强度因子范围门槛值ΔKth,绘制了da/dN-ΔK;曲线,确定了Paris公式,计算了轮辋裂纹的临界尺寸,根据轮辋裂纹的失效尺寸,计算了车轮的疲劳扩展寿命。为研究轮辋裂纹的扩展规律提供了重要的理论依据。  相似文献   

12.
列车速度的提高和车辆轴重的增加导致轮轨接触应力加大,引起车轮轮辋内部应力分布的变化。根据铸钢车轮轮辋金相分析结果,应用Goodier方程对轮辋处夹杂物和空穴周围的应力状态进行分析。在轮轨接触应力作用下,Al2O3球形夹杂物在其球体的"极点"位置产生应力集中,而空穴处于"赤道"位置,其应力更大。根据Murakami公式,以轴重为25 t的车轮为例,计算在不同运行速度下,距铸钢车轮踏面一定深度的夹杂物临界尺寸。其结果显示,在一定车速下,夹杂物的临界直径随距踏面深度的增加而增大;若深度一定,夹杂物的临界直径则随车速的提高而变小。当轮辋中夹杂物的尺寸大于该临界直径时,轮辋疲劳裂纹就可能萌生。  相似文献   

13.
车轮轮辋疲劳裂纹及掉块分析研究   总被引:1,自引:0,他引:1  
通过对近年来几起车轮轮辋疲劳裂纹及掉块事故的分析实例,介绍产生这种伤损的原因及影响因素,总结了以往的研究成果,针对我国铁路目前及今后的发展情况提出了发生该类损伤的新条件。  相似文献   

14.
采用无损检测技术的方法,分析车辆车轮轮辋缺陷的分布特点。针对车轮轮辋中缺陷出现的主要部位,进行探伤方案的理论分析、实验验证和误差分析。结果表明,检测方案灵敏度高,检测方便,操作简单,受外界环境因素影响小,可以较准确地测定车轮轮辋缺陷的位置和深度,及时准确掌握车轮轮辋的损伤状况。  相似文献   

15.
提速前后客车轮辋裂纹故障浅析   总被引:1,自引:0,他引:1  
通过提速前后郑州铁路局发现的客车轮辋故障统计,引入轮辋故障损伤率为分析参数,对轮辋裂纹故障的形成及主要影响因素进行了分析,得出提高列画速度和使用闸瓦对轮辋裂纹故障的形成有密切关系。  相似文献   

16.
为了研究机车车轮轮辋缺陷疲劳扩展规律,选择包含轮辋表面缺陷和内部缺陷的机车车轮,在1∶1高速轮轨关系试验台上进行试验。经5万km滚动接触疲劳试验,所考察的轮辋内、外缺陷均未明显疲劳扩展,由此推测机车轮辋缺陷疲劳扩展速度较为缓慢。根据试验结果,提出制定合理的检修机车车轮超声波探伤缺陷判废标准的建议。  相似文献   

17.
近年来,美国和加拿大的货运铁路在车轮方面存在一系列问题,特别是车轮的贯通性垂向轮辋裂纹(VSR),随着轴重的增加变得更为明显。问题的原因和解决方法尚不明确,美国Amsted Rail公司对车轮失效进行了轴向残余应力研究。  相似文献   

18.
动车组轮对是关系动车组运行安全的关键部件,车轮的轮辋轮辐缺陷直接关系到动车组运行的安全.在线移动式轮辋轮辐探伤设备(LU)对轮辋内部缺陷和车轮轮辐区域缺陷进行在线综合探伤,为动车组安全运行提供了工装保障.具体介绍了LU设备的应用背景、组成、原理,以及现场应用情况、存在的问题和改进建议.  相似文献   

19.
整体车轮踏面裂损的断裂力学疲劳抗力分析   总被引:2,自引:0,他引:2  
在使用踏面制动的条件下,由于过度制动的结果,在踏面上形成“蟾蜍皮”状的热裂纹。该裂纹达到临界状态将导致车轮的破损,对行车安全构成威胁。本文借助于线弹性断裂力学理论。分析了在不同运用工况下轮辋及踏面裂纹的特点及扩展机理,并用疲劳抗力分析方法确定了周期性制动力作用下,不致使“蟾蜍皮”裂纹扩展的许用裂纹深度及相应的许用周向残余拉应力值,从而使按现行热变色方法而判废的车轮,经适当处理后能重新投入运用。  相似文献   

20.
针对列车车轮轮缘及轮辋裂纹图像特点,提出根据裂纹图像特征结合Fisher法判别的车轮裂纹识别算法,同时针对图像分割后提取出的图像裂纹线断裂不连续且不完整的问题,提出交互式裂纹线点采集提取结合曲线拟合生成裂纹线的方法;算法首先在图像预处理基础上,利用局部统计可变阈值法分割图像,用小面积阈值初筛去斑,结合形态学操作后,计算面积、平均宽度、外接矩形长宽比和圆形度4个特征量,然后计算连续性筛选图像中这些特征量的极值,再利用Fisher判别法对图像中的裂纹进行识别,并提取图像裂纹线坐标,用多项式最小二乘曲线拟合出完整裂纹线。实验结果表明本文方法具有较好的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号