首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
非对称N次谐波凸轮的气门上升段的气门开启速度可取得较大,并将缓冲段包角增大,可以有效地提高上升段的挺柱升程丰满系数,改善充气性能;在气门下降段,将气门的落座速度和下降段缓冲包角取小些,使得气门落座平稳,无激烈的冲击现象。  相似文献   

2.
降低汽油机部分负荷泵气损失需要灵活的可变气门机构,凸轮驱动式液压可变气门具有较好的应用前景,但依然面临压力波动和气门落座速度难以控制等问题。本文中通过调节节流阀开度使0~4 800 r·min~(-1)的气门升程在0~8.2 mm范围内连续可变,仿真探究了活塞直径对压力波动和节流孔径对气门落座速度的影响,并据此确定了活塞直径和节流孔径,试验研究了液压油温度对气门运动特性和气门落座速度的影响规律。研究发现:适当增大活塞直径能降低系统工作压力并减小压缩波峰值,有利于降低压力波动,最终选取挺柱和气门活塞直径分别为17和14.5 mm,小于1.6 mm的节流孔径可使4 000 r·min~(-1)时的气门落座速度小于0.5 m·s~(-1)。转速不变,气门最大升程随节流阀开度的增大而逐渐降低;相同节流阀开度,转速越高气门最大升程越大,节流阀开度越大,不同转速时的最大升程差异也更大。节流阀全关,液压油温度对升程的影响很小;相同节流阀开度,随液压油温度升高,气门腔压力和气门最大升程逐渐降低。气门落座速度对液压油温度不敏感,不同温度的气门落座速度方差仅为4.9%。  相似文献   

3.
四、气门升程损失和噪声的关系 众所周知,决定理论气门升程曲线的凸轮型线上从基圆到升起部分以及从升起部分到基圆都有一个缓冲段,其目的是保证在气门开启以及落座的刹那,气门的加速度接近于零,从而最大限度地减少气门对气缸盖的冲击,降低气门传动链的振动和噪声。  相似文献   

4.
一种连续可变气门升程机构的动力学仿真   总被引:1,自引:0,他引:1  
设计了一种连续可变气门升程(CVVL)机构,气门升程可在0~9.5 mm连续可变,为该CVVL机构设计计算了凸轮型线和中间摇臂型线。利用GT‐Power对该机构进行了动力学仿真,结果表明:在所有气门升程下,气门具有相同的开启、落座缓冲段,气门动力学性能良好;凸轮与滚轮接触应力偏大,分析了应力偏大的原因,并指出优化方向。  相似文献   

5.
电磁驱动气门机构控制策略初探   总被引:1,自引:0,他引:1  
分析了实现电磁驱动气门机构软着陆的控制困难,提出了一个开环控制策略,通过调节线圈电流来降低落座速度。进行了一系列试验来探讨电流时序及其对落座速度的影响,结果表明开环控制有一定局限性。  相似文献   

6.
基于Laplace小波相关滤波法的柴油机气门间隙故障诊断   总被引:1,自引:0,他引:1  
振动信号中冲击响应信号通常表征着某种故障特征。根据Laplace小波相关滤波法的原理、方法进行气门间隙故障诊断研究。分析了配气相位与气门落座冲击的对应关系。对气门间隙正常及异常情况下的时域波形进行了相关性滤波分析,结果表明,基于Laplace小波相关滤波法能准确定位冲击发生的时刻及频率,有效地判别气门落座冲击。  相似文献   

7.
柴油机配气机构动力学特性的仿真与试验   总被引:3,自引:0,他引:3  
通过理论计算和试验进行了柴油机配气机构运动学与动力学分析研究,基于多体系统动力学理论,对配气系统动态特性进行了仿真和评价,构建了配气机构动态测试系统,进行了多参数同步测量试验.仿真模拟与试验测量结果表明:气门升程曲线连续光滑,最大气门落座速度小于许用落座速度,但落座瞬间气门加速度波动幅值较大,高速时气门落座有反跳现象,...  相似文献   

8.
采用台式试验装置模拟内燃机气门与气门座圈的负荷环境和接触条件,通过试验研究了气门与座圈的磨损机理以及气门与座圈磨损的主要影响因素。试验结果表明,气门与座圈的磨损主要来源于气门关闭时的落座冲击和燃烧压力作用下气门在座圈上的滑动,并且与气门的关闭速度、燃烧负荷、气门相对气门座圈的不对中性及气门和座圈的材料选择等工作状态有关。  相似文献   

9.
一、关于凸轮过渡曲线中的缓冲段及间隙圆。所谓缓冲段,就是在凸轮外形上用以保证挺杆克服气门间隙和静变形及其允差对配气相位影响的一个区段。为了获得足够大的气门开启时间断面和气门升程及最佳的气门运动规律、配气定时,在凸轮设计时,一般把气门的开闭点设在缓冲段内。在使用中,气门间隙过大和制造误差等,容易使气门杆倾斜提前落座而影  相似文献   

10.
基于1105单缸柴油机,开发了无凸轮轴电液配气机构.介绍了该机构的工作原理并进行了机构性能台架试验;探索了无凸轮轴电液配气机构的气门升程、气门启闭速度和落座冲击的影响因素.试验表明,该系统对气门正时、气门开启持续期和气门升程等参数可以实时控制,达到了设计要求.指出了该机构目前存在的不足及拟采取的措施.  相似文献   

11.
在MADYMO软件中使用BioRIDⅡ后碰撞假人建立追尾碰撞模型,分析了头枕位置和倾角参数对汽车发生追尾碰撞时头颈部动力学的影响,并使用颈部损伤准则值NIC和Nkm来评估颈部损伤的风险。仿真结果表明这些因素对颈部的动力学响应有着重要影响,高而且靠近头部,并且有适当增大倾角的头枕,有助于减小颈部的损伤。  相似文献   

12.
汽车发动机气门弹簧残余应力的研究   总被引:1,自引:0,他引:1  
根据气门弹簧失效机理和气门弹簧的应力分析,阐述了与钢丝轴线呈45°(或135°)方向的残余应力是直接影响气门弹簧疲劳性能的因素。采用X射线应力测试仪对去应力退火和喷丸强化处理两道关键工序中弹簧的内、外圈表面和不同喷丸强化处理参数下次表面的残余应力进行了试验,并对气门弹簧进行了模拟发动机实际工况疲劳试验验证,得到了气门弹簧在这两道关键工序中残余应力和疲劳性能的关系,为今后通过优化工艺来改善气门弹簧的疲劳寿命和性能奠定基础。  相似文献   

13.
刘小平  郭兰 《天津汽车》2010,(3):39-41,46
文章基于国内外对汽车发动机气门失效的研究现状,从工况方面出发,分析了导致气门失效的主要考虑因素,并根据气门的工况特征,采用有限元法进行了排气门在燃烧载荷、冲击载荷、温度载荷情况下及气门偏心异常条件下气门应力分布的研究,最后基于应力进行了气门的疲劳分析。结果表明,异常情况下,气门和气门座交接面处应力异常增大,疲劳损坏对气门的寿命影响很大,有可能是造成本次失效的主要原因。通过分析,也可为气门的失效分析和气门的优化设计提供理论依据。  相似文献   

14.
MFB2带圆弧段凸轮优化设计   总被引:2,自引:1,他引:1  
构造了MFB2带圆弧段凸轮型线,该类型线具有大的气门开启时面值。给出了型线的构造和设计方法.在机构动力学分析的基础上,建立了以凸轮型线时面值为目标函数,以气门落座速度、凸轮最大接触应力、凸轮最小曲率半径、气门活塞最小距离等为约束条件的动态优化设计模型。数值算例表明,该型线具有很好的充气性能及较好的动力性能。  相似文献   

15.
徐倩  樊军  谭纪全 《交通科技》2012,(2):100-103
山区公路由于地形、环境以及投资等具体条件影响.其路侧安全设计尤为重要,为保证车辆的行驶安全,对路侧护栏需进行结构安全分析与评价.针对山区公路的波形梁护栏采用AN-SYS软件,对护栏在不同角度的撞击荷载作用下的反力、应力及位移情况进行分析,得到不同的撞击角度下护栏的应力、弯矩和位移的变化规律.当碰撞角度大于30°时,护栏结构所受内力及位移变形较大,针对这一角度进行护栏的安全性能改善.  相似文献   

16.
通过对GDI增压发动机进行DVVT扫点试验,研究了DVVT对GDI增压发动机外特性性能、部分负荷燃油经济性和怠速稳定性的影响。试验结果表明:对于试验发动机的凸轮轴型线而言,排气VVT的开启对发动机性能起到负面影响;外特性方面,中等转速工况采用较大的气门重叠角可提高体积效率;高转速采用较小的气门重叠角可提高充量系数;怠速和部分负荷工况下,较小的气门重叠角对改善发动机稳定性有一定帮助。  相似文献   

17.
汽车空气悬架高度控制阀动力学模型的研究   总被引:2,自引:0,他引:2  
介绍了汽车空气悬架高度控制阀的基本组成及工作原理,并根据延时型高度控制阀的工作原理建立了动力学模型。分析了高度控制阀动作延迟时间与阻尼、不感带、缓冲弹簧预紧力及杠杆比的关系。针对高度控制阀的单向阻尼非线性特性,根据高度控制阀的试验方法,建立了高度控制阀的Simulink模型,仿真分析了延时和不感带特性,验证了该型高度控制阀的特性是满足设计要求的。  相似文献   

18.
刘鑫  巩跃龙 《路基工程》2021,(6):183-188
针对被动柔性防护网结构的系统缓冲性能,从冲击变形控制机理分析系统冲击变形的影响因素;设计了优化的缓冲结构体系。分析发现:系统冲击能力主要由网片顶冲变形、支撑绳牵引拉伸、支撑结构变形构成。对被动柔性防护网系统采用非线性数值模拟,提取系统工作条件下各部分冲击变形分量,与解析分析结果对比,验证了冲击大变形解析方法的正确性。  相似文献   

19.
利用三维有限元分析方法模拟了人体头部与复合材料层板发生柔性撞击时的整个动态响应过程。采用复合材料层板模拟了汽车的发动机罩板。分析了石墨环氧As-3501-6两种铺设类型的复合材料层板与人体头部撞击的动态响应特性,得到了铺设角度对头部HIC值、撞击速度和位移的影响。文中的模型为设计具有保护行人头部功能的复合材料车身结构提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号