首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
(114.75+229.5+114.75)m钢桁柔性拱为整体节点栓焊结构,主体结构由主桁、拱肋、桥面系、上平纵联及横联等部分构成。主桁、拱肋及上平纵联及横联杆件均为工厂焊接构件,各构件在桥位以高强度螺栓连接成整体。桥面系采用钢正交异性板结构,其横梁与主桁下弦伸出肢栓接,桥面板与主桁下弦伸出肢焊接。就其结构设计特点、制造的关键与难点,依据《铁路钢桥制造规范》(TB10212—2009),提出了钢梁工厂制造前主要应做的技术工艺准备工作,较详细地阐述了钢梁的工厂加工、制造及试拼装的工艺方案。  相似文献   

2.
横琴二桥是国内跨度最大、桥面最宽的公路钢桁架拱桥,孔跨布置为:100+400+100=600 m。桥下拱肋与下弦杆交汇处的节点(E9节点)采用焊接整体节点,节点板将主桁相关杆件和桥面纵、横梁连成一体,各构件内部加劲肋众多,形式、尺寸多样,节点的结构构造和受力状态复杂。在全桥空间有限元分析的基础上,选取具有代表性的E9节点和2个最不利的主力组合工况,完成局部精细有限元分析。研究结果表明:2个工况下E9节点各相关杆件绝大部分区域应力水平较低,Mises等效应力小于200 MPa,局部区域应力集中程度较严重,应力水平超出了弹性范围。针对拱内下弦杆变截面处出现的高应力区域的情况提出改善措施,建议在该位置增设一道环形横隔板,该方案可不影响下弦杆内的柔性系杆通过。增设横隔板后,变截面处的应力集中现象得到明显改善,应力水平在弹性范围以内。  相似文献   

3.
武广客运专线跨越武汉长江,新建武汉天兴洲公铁两用斜拉桥,首次采用主跨为504 m的钢桁梁.钢桁梁弦杆节点与横梁、公路桥面正交异性板、主桁的连接采取焊接方式,工期紧,施工难度大,对施工安全要求高.为加快建桥速度,满足工期要求,针对钢桁梁结构特点,经对架设方案的论证,拟采用整节段架设方案.在阐述钢桁梁采用整节段架设能保证工程质量、施工安全和进度,减少对通航的影响的基础上,并与采用单根杆件架设方案进行经济性比较和评价.结果表明,钢桁梁整节段架设方案优于单根杆件架设方案,并节省成本166万元.实施后达到了预期目标和效果.  相似文献   

4.
空间薄壁结构应力测试与分析   总被引:1,自引:0,他引:1  
研究目的:以焦柳线4 m×128 m连续钢桁梁桥荷载试验为依托,论述空间薄壁结构应力测试的理论和方法,在理论计算和试验数据的基础上,分析主桁杆件的受力性能、传力特点、应力状态以及次应力影响。研究结论:通过分析表明:钢桁梁桥的主桁杆件主要承受轴向力作用,受力性质与设计理论一致;桥梁的空间传力作用与杆件间的连接刚度、杆件的位置以及荷载的作用点有关,按杠杆原理简化计算2片主桁间的荷载分配是偏于安全的;按空间梁单元模型计算的下弦杆应力比平面模型计算应力小9.9%~16.4%,"桥检规"中按平面杆系模型计算统计的结构校验系数通常值仅具有参考意义;主力组合下各测试杆件的实际应力小于设计允许应力,并有一定的强度储备;杆件的次应力与节点板和杆件本身的刚度成正比。  相似文献   

5.
杭瑞(杭州—瑞丽)高速公路洞庭湖大桥主桥为(1480.0+453.6)m的双塔公路悬索桥,加劲梁采用钢桁梁结构,2片主桁横向间距35.4 m;主桁采用带竖杆的华伦式桁架,桁高9.0 m,节间长度8.4 m。钢桁梁上层桥面与主桁上弦杆结合(板桁结合),桥面采用超高韧性混凝土(Super Toughness Concrete,STC)轻型组合桥面结构。对主桥采用的关键技术进行了研究,分析中央扣对悬索桥结构体系的影响以及桁高对悬索桥加劲梁刚度的影响,并在设计中提出了轻型组合桥面板桁结合型加劲梁结构体系,在施工中提出了悬索桥钢桁加劲梁多节段窗口刚接法架设技术。  相似文献   

6.
郑州黄河公铁两用桥主桥钢梁结构设计   总被引:5,自引:2,他引:3  
郑州黄河公铁两用桥主桥需同时满足高速铁路及一级公路的行车要求,技术含量高。主桥采用了连续钢桁结合梁多塔斜拉桥、连续钢桁结合梁两种桥型。首先介绍主桥的总体布置,结构体系。而后对设计中采用的斜主桁及平行四边形弦杆、铁路正交异性整体钢桥面、公路新型结合桥面等新结构进行了着重阐述,并且论述了采用新结构的必要性及合理性。还对主桥主桁、铁路桥面和公路桥面、联结系、主塔及斜拉索的布置形式和结构构造做了详尽说明。最后详细介绍钢梁各主要构件防腐涂装要求,并且对钢桁结合梁斜拉桥采用的拖拉钢梁施工方法,以及连续钢桁结合梁采用的悬臂施工安装钢梁、顶落梁架设结合桥面板的施工过程做了介绍。  相似文献   

7.
正交异性板道砟桥面钢桁梁设计   总被引:1,自引:0,他引:1  
以96 m正交异性板道砟桥面钢桁梁为研究对象,根据主桁下弦杆为拉弯构件的受力特点,设计中适当增大主桁下弦杆的竖向抗弯刚度。通过取消传统的钢混组合式道砟槽板,采用新型MMA防水体系+CAP轻质垫层+钢挡砟墙桥面系布置,减小二期恒载30%以上,有效减小了主桁用钢量。为了解决正交异性钢桥面板活载加载计算工作量大的问题,提出了正交异性板桥面系虚拟影响面加载法。钢桁梁的各项刚度指标分析结果表明:本桥具有较大的整体刚度,满足200 km/h的列车行车速度要求。结合桥址实际情况,在钢桁梁小夹角上跨既有铁路状况下,采用转体施工法进行钢桁梁架设。  相似文献   

8.
研究目的:现行加固规范针对钢桁架连续梁桥加固中优先考虑增大杆件截面,但是针对无法卸载的桥梁,杆件在负荷情况下焊接增大截面存在较大安全风险,而节点板加固难度更大;针对全焊接的钢桁架桥,更换杆件及节点板无法实施。本文旨在通过对某某全焊钢桁架连续梁桥加固方案研究,提出一种适合的加固方法,并解决其中的关键技术。研究结论:(1)针对某钢桁架连续梁桥承载能力不足的问题,在不卸载的前提下,通过多种方案比选,创新性地提出了新增主桁的加固方案;(2)为达到新旧结构共同受力,降低原桁架承受的荷载,采取了顶升新桁架的方式进行受力体系转换;(3)计算分析和加固后两年的检验证明了加固方案安全合理,加固效果明显;(4)本研究提出的新增主桁加固可应用于同类桥梁工程中。  相似文献   

9.
商合杭高铁芜湖长江公铁大桥为双塔双索面高低塔钢箱钢桁组合梁斜拉桥,桥梁由2片主桁、上层公路桥式桥面、下层铁路钢箱桥面、上下弦杆、竖杆及桥门架构成。为验证施工图纸的正确性和制造工艺的合理性,并指导桥址现场实桥施工,须在拼装厂进行试拼装。由于桥址现场节段拼装条件限制,仅能实现单节段拼装,而且工期要求十分紧张,要在空中实现多个拼接口的高精度对接,最终放弃平面试拼装采取立体试拼装方案。选择8个具有代表性的节段,按照铁路桥面、腹杆、公路桥面的顺序进行拼装。大桥立体试拼装实施顺利,且试拼装节段的桁宽、桁高、节间长度等主要尺寸精度满足设计要求,符合验收标准,验证制作工艺和试拼装方案的合理性。  相似文献   

10.
1 47.4 m下承式钢桁人行天桥采用矩形杆截面,无节点板及竖杆,三角形腹杆和弦杆直接抵焊的桥型,配合“H”型四柱式主墩刚结长大坡道的设计,在武汉市解放大道江岸车辆厂人行天桥的运用中较为经济、合理,通过本桥的设计实践对城市人行天桥的设计具有一定的参考作用。  相似文献   

11.
石济客运专线济南黄河公铁两用桥主桥采用了三桁式刚性悬索加劲连续钢桁梁的特殊结构形式,针对此桥梁的结构特点,开展了成桥专项试验研究。首先测试了外荷载作用下桥梁3片主桁挠度及相应杆件应力的横向分配。其次,测试了有砟轨道铁路桥梁正交异性桥面体系在列车局部轮载作用下各构造细节的受力特征。最后,对刚性悬索加劲钢桁梁上弦杆与加劲弦连接处特殊节点的受力特性进行了测试。实测结果表明:桥梁3片主桁横向具有较好的整体性;有砟轨道铁路桥梁的正交异性桥面体系各构造细节均未出现明显的应力集中效应;特殊节点板受力特征与有限元计算结果吻合,连接板圆弧倒角处应力较大。  相似文献   

12.
研究目的:贵广铁路思贤窖特大桥主桥为(58.5+109.25+230+109.25+58.5)m四线铁路斜拉桥,为国内首座四线铁路采用两片主桁的大跨度宽桁斜拉桥。主梁采用两片主桁,桁宽24 m,主桁采用三角形桁式,桥面系采用带边纵梁和水平K撑的密横肋体系。本文对宽桁断面、桁式以桥面系构造和动力性能等关键技术进行了研究,为类似工程提供参考。研究结论:四线铁路宽桁斜拉桥,四线横梁跨度大,梁跨中、端部弯矩巨大,传递给主桁的面外弯矩较大。研究表明:无吊杆无竖向K撑横断面的三角形主桁桁式,有效地减小横梁跨度,同时每个下弦节点处的两根腹杆共同承受面外较大弯矩。带水平K撑和边纵梁的桥面系,通过改变力的传力途径,使主桁只受节点力,改善了横梁和主桁的受力。通过对宽桁断面、桁式以及对带边纵梁和水平K撑密横肋体系桥面系的创新性研究,成功地解决了四线铁路宽桁斜拉桥设计中的技术难题。  相似文献   

13.
密布横梁正交异性板整体桥面受力行为   总被引:3,自引:0,他引:3  
采用空间有限单元法和模型试验,研究南京大胜关长江大桥三主桁(拱)密布横梁体系钢正交异性板整体桥面结构的受力行为。研究结果表明:50%以上的桥面荷载通过下弦杆或系梁传至下弦节点,这部分荷载会引起下弦杆或系梁的竖向弯曲。针对三主桁(拱)密布横梁正交异性板桥面结构,提出桥面荷载在3片主桁(拱)中的2次分配的分析方法,第1次桥面荷载分配在3片主桁下弦杆或3片桁拱系梁中进行,中桁与每片边桁分配到的荷载比约为2.3~3.3,支座处大,跨中小;第2次桥面荷载分配通过横联在上弦节点中进行,中桁将0~24%的桥面荷载分配给2个边桁,跨中大,支座处小;经2次分配后,在离支座1~2节间以外的区域,中桁与边桁分配到的总荷载比约为1.0~1.2,靠近支座的区域,中桁与边桁分配到的总荷载比仍为2.5~3.3;只有第1次分配到的桥面荷载引起主桁下弦杆和桁拱系梁竖向弯曲,中桁(拱)的吊杆力、下弦杆和系梁的竖向弯矩约为边桁的2倍以上。  相似文献   

14.
芜湖长江大桥,采用了新结构、新材料、新技术及新工艺。其中整体节点弦杆是芜湖桥制造中工艺最复杂、制造难度最大的杆件,多达700余根。本文详细介绍了在整体节点上采用的各项新技术和新工艺,并对新技术成果做了评述。  相似文献   

15.
钢桁梁腹杆插入式节点杆端应力分析与探讨   总被引:1,自引:0,他引:1  
研究目的:为便于制造与安装,大跨钢桁连续梁桥往往在采用整体节点,腹杆与主桁节点连接时,腹杆插入节点板中,采用高强螺栓两面连接。由于仅连接杆件的两个面,另外一面(或两面)不直接承受节点板传递的荷载,必然存在剪力滞效应。通过建立钢桁梁腹杆的几种典型截面的有限元模型,研究两面连接腹杆端部的应力分布,从而掌握腹杆端头板件应力分布的规律并用于指导钢桁梁桥节点设计。研究结论:杆件端部最大正应力均发生在螺栓群末端;一般来说,杆件板厚越大,螺栓连接沿杆件长度方向的排数越多,最大正应力与名义正应力的比值越小;截面形式变化、板件厚度变化不会对最大剪应力的发生部位产生影响;杆件中部,截面应力趋于均匀,剪力滞效应不显著。  相似文献   

16.
下承式钢桁结合梁桥通过桥面板与主桁结构的连接形成稳定的空间结构,使得桥梁的刚度,特别是面外抗弯刚度得到了有效提高。密布横梁体系的下承式钢桁结合梁桥则取消了纵梁,增加了节间横梁,改善了桥梁结构主桁的受力情况。本文以跨度64 m的密布横梁式钢桁结合梁桥为例,通过静、动载试验和有限元分析,研究了该结构体系的受力特性。研究结果表明:该桥一阶横向自振频率满足规范要求;且由于桥面板与下弦杆形成的整体共同承受外部荷载,在30 t轴重荷载作用下弦杆与横梁受力较小,最大应力分别为26.39,30.73 MPa,并有效减小了下弦杆挠度,实测挠跨比远小于限值;混凝土桥面板以受拉为主,顺桥向最大应力为3.53 MPa。该桥动力性能良好,跨中横、竖向振动特性均满足规范要求,满足30 t轴重重载运输要求。  相似文献   

17.
京沪高速铁路工程天津枢纽-城际联络线南仓特大桥位于R=700 m的小半径圆曲线上,该桥跨越京山Ⅰ线、京山Ⅱ线、南仓至京山Ⅰ线联络线和京山津浦上联铁路处采用了直线跨度为125 m的直梁外包正交异性桥面系简支钢桁梁。介绍其主桁结构形式、主桁杆件计算、桥面板计算、结构变形、动力计算分析及主要焊接工艺等。计算分析表明,由纵肋、横梁和盖板三者之间焊接组成的正交异性钢桥面大跨简支钢桁梁因其跨越能力大、刚度大、上建高度低、安装架设方便,对于解决施工场地异常困难、线路位于小半径等困难条件下跨越铁路问题是较好的解决方案。  相似文献   

18.
三门峡黄河公铁两用大桥为蒙西至华中地区铁路煤运通道跨越黄河的控制性工程,通行双线重载铁路、双线Ⅰ级铁路及6车道高速公路,全长5 663. 754 m,其中公铁合建段长1 762. 733 m。主桥采用(84+9×108+84) m连续钢桁结合梁,钢桁梁为3片主桁结构,中边桁中心距13. 6 m,每片主桁均采用无竖杆的三角形桁架,桁高15 m,节间长12 m。下层铁路桥面采用正交异性整体钢桥面板;上层公路桥面采用混凝土板与主桁结合的组合结构。钢梁材质采用Q370qE。设计活载合计473. 2 k N/m。桥墩采用圆端形门式空心墩,基础采用钻孔桩基础。主桥采用双曲面减隔震支座及合理的构造处理有效提高了结构抗震性能。钢桁梁采用顶推法施工,公路桥面板采用预制架设法施工。  相似文献   

19.
目前四线铁路钢桁梁多采用三主桁型式,采用双主桁的四线铁路桥跨度多在200 m左右。当四线铁路钢桁梁采用双主桁时能适应最小线间距要求,减小主桁横向总宽度,并降低主桥和引桥的工程规模及邻近隧站工程量,因此研究双主桁大跨度钢桁斜拉桥在工程上具有重要意义。结合某高速铁路四线大跨钢桁斜拉桥主桁横断面布置及桁梁主要构造尺寸,从结构受力、技术经济指标、不同桁宽所引起的引桥规模等方面研究三片桁与两片桁的主要差别,合理推断出四线高速铁路钢桁梁最小桁宽。同时从主桁腹杆承受较大面外弯矩及用钢量等方面比较四线主桁腹杆采用三角桁与N形桁的区别。最终确定主桁梁采用桁宽24.3 m的双主桁、腹杆为三角形桁式的钢桁架。研究结果表明:四线双主桁钢桁斜拉桥应用到500 m左右大跨度桥中在技术和经济上是可行的。  相似文献   

20.
针对N式钢桁梁桥,通过对钢桁梁节点坐标的求解模拟钢桁梁的无应力安装过程,提出了一套预拱度设置计算方法。首先采用几何正序拼装方法,以节段桁式矩阵、节间长度矩阵和理论预拱度为输入参数,依次计算杆件伸缩值的精确解。然后根据制造精度调整杆件伸缩值,以实际杆件制造长度计算厂制预拱度。最后根据节点坐标计算各杆件平面角度,为设置错孔角提供依据。利用数学软件编制了相应程序,并与实际工程灌河特大桥项目的设计数据进行了对比,证明该方法可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号