首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以杭州地铁1号线穿越艮山门站铁路加固工程为背景,介绍在地铁盾构穿越既有铁路前对铁路路基进行注浆加固的方案,并在注浆加固施工和地铁盾构推进阶段对营业线路进行专项监测,对施工引起的线路和路基变形实时监控,从而及时调整施工参数,优化改进施工方法,确保铁路营业线安全。  相似文献   

2.
地铁盾构下穿对既有铁路变形的影响   总被引:2,自引:1,他引:1  
随着轨道交通的发展,地铁盾构下穿既有铁路的工程日益增多,其工程难度较大且变形难以控制.本文以北京市地铁14号线穿越京津城际铁路为例,通过ANSYS有限元软件,建立地层-土体结构三维实体模型,模拟盾构穿越京津城际的施工过程,分析探讨不同工况下既有铁路路基及轨道结构的变形规律,并提出理论分析方法和既有铁路保护措施,为今后类似盾构穿越工程提供建议和参考.  相似文献   

3.
黄土地区地铁盾构下穿铁路变形控制技术   总被引:1,自引:0,他引:1  
研究目的:黄土地区某城市地铁2号线盾构施工下穿既有陇海铁路线是一个盾构施工中的I级风险源,为保证地铁盾构施工安全下穿陇海线路,开展了盾构施工穿越既有铁路的变形控制技术研究,以为盾构安全施工提供技术支撑。研究结论:(1)黄土地区地铁盾构下穿既有陇海线路的地表沉降规律:不采取控制措施盾构施工时,路基右线隧道轴线正上方的沉降量为20.48 mm,左线隧道轴线正上方的沉降量为12.85 mm,左右线隧道的轴线上的沉降量均超出了沉降允许值;采取严格控制土压力、盾构匀速通过、严格控制注浆量、减少盾构推进方向的改变等减小地铁盾构下穿既有铁路施工风险的措施盾构施工时,右线隧道轴线正上方的沉降量为5.44 mm,左线隧道轴线上方的沉降量为4.95 mm,均小于变形允许值。(2)FLAC计算预测的变形规律与实际值基本一致,地表和铁路路基的变形量在允许范围内;减小地铁盾构下穿既有铁路施工风险的措施合理有效。(3)该研究成果可应用于黄土地区地铁盾构下穿铁路施工变形控制。  相似文献   

4.
济南地铁某区间盾构隧道下穿既有京沪铁路路桥区段,为减小盾构施工对既有铁路路桥的影响,文章对盾构隧道下穿既有铁路路桥设计方案做了比选研究,并通过MIDAS有限元软件对盾构隧道施工阶段进行数值模拟,计算分析铁路路桥在盾构隧道开挖过程中产生的变形与沉降,根据数值计算的结果对施工措施提出建议。  相似文献   

5.
地铁建设过程中遇到下穿既有铁路的情况时,如何选择适当的措施保证地铁下穿施工过程中不影响铁路正常运营是一个比较复杂的问题。结合盾构区间下穿既有铁路的工程实例,对盾构下穿既有铁路进行了三维数值模拟,从结构受力分析、变形计算等方面着手,研究盾构隧道下穿时对既有铁路的安全技术措施,以期对于类似的工程有一定的借鉴意义。  相似文献   

6.
以西安地铁5号线平村站—阿房宫站区间下穿西户铁路工程为背景,通过研究分析盾构下穿过程中地表沉降特点,提出盾构施工中调整土仓压力、掘进速度、注浆参数等技术措施。监测结果表明,采取的控制技术措施可以有效减小地表沉降,保证盾构顺利穿越既有铁路。  相似文献   

7.
随着地铁建设的辐射延伸,地铁施工穿越既有铁路的情况也越来越多,安全风险问题更为突出,为保证既有铁路的安全和新建地铁的顺利施工,以昌平线二期十三陵景区站~西关环岛风井区间为例,按照铁路沉降控制标准的要求,对地铁区间盾构掘进前采取地表加固铁路轨道、建立试验段确定盾构掘进参数、加固地层换刀等技术方案,掘进过程中合理选用土压、推进速度、同步注浆、二次补偿注浆等掘进参数,建立应急预案、监测控制等技术措施,保证了铁路轨道变形、地表沉降处于可控范围,达到了沉降控制的效果。  相似文献   

8.
地铁隧道在下穿既有铁路施工时,保证铁路运营安全是施工中的关键问题之一。通过建立FLAC三维数值模型,对南京地铁S8线某段盾构隧道下穿既有宁启铁路进行了计算分析,并根据计算结果建议对铁路路基采取地基注浆加固措施。对加固后的地基重新进行计算,同时制定了地基变形监测方案。监测结果表明,地铁隧道盾构施工时,影响地面沉降的因素由地基和施工参数共同作用组成。在地铁隧道下穿铁路施工时,对铁路地基进行的注浆预加固保护措施和盾构掘进过程中对施工参数进行的动态调整,保证了地铁隧道施工期间该铁路的运营安全。  相似文献   

9.
在盾构穿越既有构筑物时,为确保施工安全,需要分析不同施工方案下盾构对既有结构及地表的影响。以天津地铁1号线盾构穿越双林站—李楼站区间风机房为例,采用数值分析方法,分析不同填充方案下盾构穿越风机房对结构内力、结构位移及地表位移的影响。分析结果表明,全填素混凝土方案在填筑过程及盾构推进过程中对地表位移、结构位移及结构内力的控制方面表现较好。  相似文献   

10.
在城市地铁隧道施工过程中,越来越多的地铁建设将面临多次穿越既有地铁线路的问题,这是新线建设中等级最高的风险之一。本文选取了深圳地铁2号线斜穿地铁1号线工程案例,研究了盾构下穿过程中采用的施工技术,分析了下穿过程中监控量测数据,总结出了盾构下穿过程的关键技术。可为以后的地铁穿越提供借鉴。  相似文献   

11.
[目的]富水砂层地质条件下,新建地铁线路盾构始发穿越既有地铁线路时,对既有地铁线路结构稳定性的研究较为鲜见,需总结类似工程的相关规律。[方法]以新建的郑州地铁7号线黄河迎宾馆站—英才街站区间盾构始发穿越既有地铁2号线结构工程为依托,根据实际工况采用有限元软件MIDAS GTS NX建立了施工区间的三维数值模型,并利用软件的结果提取功能得到了该工程对应模型的模拟结果。选取现场2个监测点位,将2个测点的现场实测值与模拟计算值进行对比,证实了该模型的准确性。在此基础上,进一步研究了盾构始发穿越、一般下穿施工两种穿越方式下对既有地铁线路结构稳定性的影响,以及始发洞门与既有地铁结构间竖向距离d的4个取值对既有地铁线路结构稳定性的影响。[结果及结论]所建三维模型在一定程度上可反映实际工况。在既有地铁线路结构、材料、加固方式等因素均不变的情况下,既有地铁线路结构的稳定性因穿越方式的不同而有所差异,与一般下穿施工相比,采用盾构始发下穿方式时对既有地铁线路结构的影响较小。采用盾构始发下穿方式时,d的取值不同,对既有地铁线路结构稳定性的影响有较大差异。d=2.00 m对既有地铁线路结构的影响较小,工程成本...  相似文献   

12.
以天津地铁6号线某盾构区间下穿既有铁路为工程背景,通过三维有限元分析,对采取不同加固措施下的盾构施工工况进行了数值模拟,依据铁路变形控制标准来指导软土地区的盾构施工。结果表明:该盾构区间与既有铁路之间存在一定距离,在不考虑对铁路路基和轨道进行加固的情况下,通过对盾构施工工艺进行优化、控制,可以保证盾构施工期间既有铁路的安全行车要求。  相似文献   

13.
盾构法是目前城市轨道交通建设中的主要方法之一,在施工中常会穿越既有火车站股道及站房,影响铁路运营安全与地铁施工安全。当前地铁穿越施工多为双线或三线下穿,四线并行穿越在国内十分少见,相关研究尚显不足,此外四线并行穿越会增大工程风险与隐患,因此开展相关研究意义重大。探讨盾构隧道四线并行下穿火车站股道及站房的关键技术,研究成果可为同类工程参考。  相似文献   

14.
地铁盾构下穿铁路施工是一项高风险作业,加固方案的合理性直接影响到隧道施工安全。对于苏州地铁3号线下穿既有铁路加固方案,通过采用三维有限元方法,对盾构隧道的掘进进行数值模拟分析,结果表明:采用加固措施后,地铁盾构在掘进过程中,其地表、桥墩及路基部位的沉降均为超过设计中规定限值;隧道周边采用加固措施后,能够降低左右线隧道掘进相互之间的影响。由此得到,采用加固方案后,地铁盾构在掘进过程中,不影响其上铁路列车行车安全。  相似文献   

15.
淤泥地层盾构隧道上穿邻近地铁隧道施工难度大、风险高。为了研究淤泥层中盾构上穿近接既有地铁线路的影响规律及控制效果,以深圳地铁5号线右线上穿近接地铁11号线为背景,提出采用旋喷桩联合袖阀管注浆加固技术来提高地基强度并降低对已运营地铁线路的扰动,结合数值模拟和自动化监测数据结果,分析淤泥地层中盾构上穿近接既有地铁线施工稳定性控制效果,并给出盾构掘进参数的建议值。结果表明:旋喷桩联合袖阀管注浆加固技术可对线路起到长期保护作用;盾构施工过程中, 5号线上部地表隆起和沉降量维持在3 mm范围内浮动;在该加固技术条件下,建议土仓压力、注浆压力、推进速度、同步注浆量取值分别为0.14~0.20 MPa,0.15~0.2 MPa,25~35 mm/min,6.5~7.0 m~3/环。  相似文献   

16.
研究目的:为研究宁波地区地铁盾构下穿铁路路基的变形控制,本文首先基于宁波典型土层,通过数值模拟与Peck经验公式,得出盾构施工引起的各土层沉降槽宽度系数参考值;其次以盾构下穿甬台温铁路为研究背景,通过三维数值模拟的对比分析,研究盾构穿越完全加固区、部分加固区以及非加固区的路基沉降变形规律。研究结论:(1)宁波典型土层可归纳为淤泥质土、黏性土、粉土及砂性土三类,盾构施工扰动引起的K值及沉降槽宽度在三类土中依次减小,最大沉降值依次增加;(2)通过线形回归拟合,首次提出了土层扰动的初始敏感因子和深度敏感因子,随着区间埋深的增加,初始敏感因子作用逐渐减弱,深度敏感因子的作用逐渐增强,当埋深足够大时,地面变形趋于一致;(3)盾构下穿既有加固的铁路路基时,应避免穿越半加固区,在完全加固区与非加固区,盾构下穿引起的路基变形均随埋深的增加逐渐减小,但非加固区内沉降曲线趋于平缓;(4)本研究成果对软土地区盾构下穿铁路的方案优化和安全施工具有借鉴意义。  相似文献   

17.
中砂泥岩复合地层中的泥水盾构掘进面临堵仓、堵管的风险,对于控制沉降极为不利,尤其是近距离下穿既有成型隧道。以南宁地铁2号线火车站~明秀路区间(火明区间)泥水盾构下穿既有地铁1号线为背景,首先分析了中砂泥岩复合地层中盾构施工的风险,然后介绍了盾构穿越既有隧道前的加固措施,穿越前盾构机的开仓及检修工作,穿越过程中的掘进参数控制,最后介绍了采用基于自动化监测的沉降反馈控制体系。现场实测数据表明:泥水盾构在含泥岩地层中极易发生堵仓堵管,对于控制开挖面稳定十分不利,有计划的开仓清理对于穿越重大风险源是必要的;对既有成型隧道的加固是必不可少的措施,穿越过程中要以控制开挖面泥水压力为目标,降低推进速度;穿越过程中沉降信息的实时反馈是实现微扰动施工控制的关键,通过上述措施,既有1号线隧道最大沉降控制在-5.7 mm。  相似文献   

18.
盾构在富水砂层中近距离穿越铁路箱涵,不仅仅涉及盾构施工本身的安全与质量问题,更需确保铁路箱涵的沉降在要求范围内,保证铁路列车行车安全。以南昌地铁土建六标穿越京九铁路箱涵为背景,从设备选用与改进、施工辅助措施、掘进参数选择与控制等方面论述了施工过程中采取的相应对策与技术措施,为类似工程的施工提供参考。  相似文献   

19.
在城市地铁建设中,经常出现新建隧道下穿既有隧道的情况,为研究新建盾构隧道施工对既有公路框架隧道的影响,以宁波地铁1号线世纪大道站—海晏北路站区间隧道斜交下穿浅覆土市政公路框架隧道工程为依托,采用三维有限元数值分析方法,研究盾构隧道在下穿框架隧道3个阶段(盾构到达既有隧道正下方前、穿越既有隧道正下方及穿出既有隧道后)施工过程中盾构机顶进力、壁后注浆压力对于上部框架隧道沉降、侧移及扭转影响的规律,计算结果表明,在盾构到达既有隧道正下方前及穿出既有隧道后,沉降量和扭转幅度在一定范围内随顶进力和注浆压力的增大而增大;盾构下穿既有隧道正下方阶段,沉降量和扭转幅度在一定范围内随顶进力和注浆压力的增大而减小。施工过程中宜随着盾构与既有隧道位置关系的改变,及时调整各项施工技术参数,减小对上部隧道的影响,保证盾构顺利掘进。  相似文献   

20.
地铁盾构下穿既有铁路施工时,土体的扰动会导致既有铁路产生不均匀沉降,对铁路安全运营产生非常不利的影响。本文考虑盾构隧道下穿施工,铁路路基及结构间的相互作用关系,建立结构-路基-土体有限元模型,分析盾构施工过程中铁路路基和框架桥的变形特征,评估工程安全性,提出相应的施工加固措施和加固范围,并与监测结果进行了对比分析,结果表明设计所采取的加固措施是切实可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号