首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
西部风沙地区强风沙流对高速列车运行带来巨大安全隐患。高速列车的行驶线路一般分为平直地面、路堤及高架桥等,不同线路类型对高速列车气动特性的影响差异明显,尤其在强横风下,列车运行的流场特性更加复杂。为研究风沙环境下不同线路类型对高速列车横风气动特性的影响,采用数值模拟方法对列车运行速度250 km/h,横风风速分别为10,20,30,40,50 m/s,线路结构分别为平直地面、5 m路堤及10 m高架桥等不同工况下的列车气动性能进行仿真对比分析。计算结果表明:风沙环境下列车迎风侧正压区域及背风侧负压区域相比无沙环境均增大,其中,头车在平地工况下压力增幅最大,路堤及高架桥工况较小;风沙流中沙粒增加了列车的阻力,随着横风风速增大,头车阻力系数减小,尾车阻力系数增大,中间车阻力系数基本不变,列车侧向力系数均增大;在同一横风风速下,不同类型线路对头车的阻力系数和侧向力系数影响最大,其中,在路堤工况下列车稳定性较差,更容易发生侧翻危险。  相似文献   

2.
强横风下青藏线棚车气动性能研究   总被引:5,自引:2,他引:3  
采用非结构网格,对强横风下青藏线桥梁上运行的棚车气动性能进行数值模拟,并对部分数值模拟的结果进行风洞实验验证。计算结果表明:实验结果和数值模拟的结果较吻合;在指数风条件下,棚车的气动力随桥梁高度和横风速度的增加而迅速增加;而列车的减速运行,将使棚车所受到的气动力和倾覆力矩降低,有助于棚车安全通过风区桥梁。  相似文献   

3.
基于大涡模拟的高速列车横风运行安全性研究   总被引:1,自引:0,他引:1  
结合高速列车空气动力学和多体系统动力学,研究横风对高速列车运行安全性的影响.首先采用大涡模拟计算方法,研究了不同横风风速下高速列车非定常气动载荷的时域及频域特性,列车周围流场结构及相应的非定常流场特性.然后建立高速列车多体系统动力学模型,将得到的气动力作为外加载荷作用于列车上,研究了不同横风风速下定常气动力和非定常气动力对直线上高速列车运行安全性的影响特性,计算结果表明,与定常气动力相比,作用于车身上的非定常气动力使列车的振动加剧.最后参照高速列车的安全运行标准,对高速列车的安全运行进行分析,为横风下高速列车的安全运行提供参考.  相似文献   

4.
基于SST k-ω湍流模型和Euler-Lagrange离散相模型,建立了风沙环境下高速列车空气动力学计算模型,研究了不同沙粒浓度、不同风速及不同车速条件下的列车空气动力学性能。计算结果表明:风沙环境下,列车头车迎风侧主要受正压力影响,背风侧主要受负压力影响,最大正压力区域由鼻尖逐渐向迎风侧偏移;由于横风的影响,随着沙粒浓度的增强,头车迎风侧沙粒质量浓度增大,背风侧沙粒质量浓度变化较小;对于固定的车速和风速,头车气动力系数随沙粒浓度的增强而增大,且与沙粒浓度近似呈线性关系;沙粒浓度固定时,头车气动力系数随风速的增大而增大,随着车速的提升,头车气动力系数反而下降;风沙环境下,头车侧力系数、头车侧滚力矩系数可近似拟合为沙粒浓度、侧偏角及合成风速的二次多项式;头车升力系数可近似拟合为沙粒浓度、侧偏角及合成风速的三次多项式。  相似文献   

5.
良好的横风运行安全性是实现高速动车组速度能力提升的有效手段.现搭建了基于空气动力学和车辆系统动力学的高速列车车辆横风运行安全性耦合计算模型,根据动车组在不同车速(150~300 km/h)和风速(10~35 m/s)下的气动力和气动力矩计算结果,分析了不同气动载荷对动车组动力学性能的影响.在此基础上,提出了CRH3G动车组的横风运行安全速度域.  相似文献   

6.
建立了横风环境中高速列车运行于复线路堤上的三维空气动力学模型,开展了路堤高度和列车在复线路堤上的位置对高速列车气动性能影响的数值计算与对比分析。结果表明,路堤上列车周围的气流流速大于平地上的气流流速,导致路堤上列车气动性能较平地上恶劣;路堤高度和横风速度对高速列车在下风线上和上风线上气动性能的差异有重要影响;列车在下风线上运行比在上风线上运行更容易发生倾覆。  相似文献   

7.
采用数值计算方法分别对在同一车速下相同风速、不同浓度、不同颗粒直径的风沙对动车组列车气动性能的影响,以及同风沙浓度、同风沙颗粒直径下,风速不同对列车气动性能的影响。结果表明在风速和风沙颗粒直径不变的情况下,沙粒颗粒浓度的增加和颗粒直径的增大都导致了列车整体的气动阻力的增大,但影响不大。在风沙颗粒浓度以及风沙颗粒直径不变的情况下,风速的增加使得风沙颗粒对列车整体的气动阻力有明显的增大。  相似文献   

8.
研究了不同横风风速下,列车在通过曲线道路时空气动力性能并进行仿真分析。根据计算得到的数据,分析了不同横风速度时相应的车体纵、横向气动力变化和列车的倾覆系数。参照有关高速列车曲线通过稳定性评定标准,给出了9级横风风速下单轨列车安全运行的速度限值,为今后单轨列车在横风作用下的运行安全性提供一定的依据。  相似文献   

9.
基于三维非定常不可压雷诺时均N-S方程和Realizable k-ε湍流模型,采用滑移网格对大风环境下高速列车从静止匀加速到200km/h的非定常气动性能进行模拟。将列车匀速运行的非定常气动力系数的均方根值与风洞试验结果对比,两者规律吻合,幅值差小于10%。结果表明:在15 m/s的横风下,列车匀加速的不同时刻,头、尾车和车辆连接处压力波动明显,当列车运行速度与风速大小相等时,压力波动最大;气动力系数的变化率随车速与风速比值的增大而迅速减小;列车以不同的加速度运行时,相同车速受到的气动载荷相等,但随加速度的增加,侧向力、阻力、倾覆力矩的变化率不断增大,将导致短时间内高速列车气动载荷的变化增大。  相似文献   

10.
为探明横风作用下车体侧滚对列车气动性能和运行稳定性的影响,采用三维、定常、不可压缩雷诺时均方程和k-ε双方程湍流模型,对CRH5G动车组进行仿真计算。研究结果表明:当侧滚角从0°增加到2.5°时,车底部迎风侧负压减小,绝对值最大相差532 Pa,车顶迎风侧负压增大,绝对值最大相差579 Pa,车底压力变化的区域更大,车顶和车底背风侧的压力变化都不大;头车后部车底负压减小,绝对值最大相差470 Pa;气动力方面,列车升力增大,头车升力变化最为明显,从0.15 k N增加到16.6 k N;头车的点头力矩提升了20%,尾车的点头力矩下降了7%;进一步的车辆动力学仿真计算结果表明:车体侧滚引起的气动载荷变化对列车脱轨系数、倾覆系数的影响很小。因而在研究横风作用下的列车运行稳定性时,一般可不考虑车体侧滚对气动性能的影响。  相似文献   

11.
应用计算流体动力学仿真获得了高速列车在3种典型横风环境下车体所受定常气动力,然后运用车辆多体动力学分析软件,对高速列车在通过曲线过程中所受横风下具有定常特性的气动力作用对其行驶安全性的影响进行了研究,确定了典型大风环境下处于危险状态的车轮,并通过试验设计方法,得出气动力6分力中气动升力和侧滚力矩对高速列车行驶安全性的影响最大.  相似文献   

12.
基于三维、非定常、不可压缩N-S方程和k-ε双方程湍流模型,采用滑移网格技术,对横风作用下普速客车与动车组在挡风墙后交会气动性能进行数值模拟,并研究4种挡风墙高度对交会列车气动性能的影响。研究结果表明:数值模拟的列车表面瞬变压力与实车试验结果规律一致,交会压力波峰值的相对误差在10%以内;普速客车和动车组在横风下交会时,横风使得列车头部和尾部最大正压区和负压区域均发生了横向偏移;动车组与普速客车所受横向力和倾覆力矩均随着车速的增加而增加,当普速客车车速由100 km/h增至160 km/h时,普速客车和动车组倾覆力矩峰值分别增加了11.7%和20.8%,动车组受交会车速的影响更大。设置3.5 m高的挡风墙时,列车受到的横向力在4种挡风墙高度中整体上最小,与无挡风墙时相比,普速客车机车和动车组头车受到的横向力峰值分别下降了85.7%和45.4%,列车气动性能明显改善。  相似文献   

13.
横风作用下高速列车安全运行速度限值的研究   总被引:2,自引:0,他引:2  
横风作用下的列车安全运行速度限值应通过列车气动特性和车辆轨道动力学特性的分析得到。以我国CRH3型高速列车实车为原型,考虑真实受电弓、转向架等列车的细部特征,假定列车在平地上行驶,对列车速度分别为200、250、300、350和380km/h,横风速度分别为10、15、20、25和30m/s,风向角为90°的25个工况进行气动特性的数值模拟,并采用国内实测轨道谱和德国轨道谱分别对这25个工况的车辆轨道动力学性能进行仿真计算和对比分析。结合国家标准和技术规范,给出CRH3型列车在平地上运行时,横风风速与列车最大安全运行速度之间的对应关系,为横风作用下的列车运行安全控制提供参考。  相似文献   

14.
高速列车在强风沙环境中行驶对行车安全造成了巨大隐患,因此研究强风沙环境中列车的安全性能十分重要。在研究风沙对高速列车冲蚀情况时,粒子对列车的冲蚀程度可以用冲蚀率来衡量。基于流体动力学理论,利用欧拉-拉格朗日方法模拟风沙对列车头车的冲蚀,基于三维、非定常、不可压缩的Navier-Stokes方程和标准k-ε两方程模型,对不同风沙条件下的列车磨损特性进行数值计算与分析。研究发现:当沙粒入射角度不断增大时,头车最大正压区随之增大,且冲蚀面积也随之增加,其主要冲蚀部位在列车最大正压区;当沙粒入射角度为45°时,头车冲蚀率达到最大值;风速和沙粒浓度不变时,列车头车冲蚀率随沙粒粒径的增加呈先增加后减小,最终趋于稳定的趋势,冲蚀过程存在明显的加速期和稳定期;风速和沙粒直径不变时,头车冲蚀率随沙粒浓度增长呈线性增加。  相似文献   

15.
项叶琴 《上海铁道科技》2011,(3):109-110,116
基于三维、定常、不可压缩N-S方程及k-ε双方程湍流模型,采用数值模拟计算方法分别对高速列车CRH1在不同侧风风速、不同风向角工况下的气动性能进行模拟。研究结果表明:对于不同横风风速,车辆的横向力、升力及倾覆力矩均随着横风风速的增大而增大,但其对应的气动力系数基本保持不变;对于不同风向角,车辆的横向力、升力及倾覆力矩均随着风向角的增大而增大,风向角为75°时,气动力增长率变缓,对应的气动力系数变化与之一致。  相似文献   

16.
考虑风载的高速列车受电弓静强度分析   总被引:1,自引:0,他引:1  
铁路高速化在带来方便快捷运输条件的同时,也使列车及其相关结构所受的空气阻力急剧增大,为保证受电弓的安全运行,有必要开展气动载荷作用下的受电弓静强度分析。基于ANSYS Workbench的静强度分析功能,现对气动载荷作用下的受电弓静强度分析方法进行了探索,分析了气动载荷的影响效果,并实现了气动力作用下V500高速受电弓的静强度校核。结果表明,V500高速受电弓弓头在气动力作用下呈抬升趋势,该型弓具有良好的气动性能;对比开、闭口运行工况下的结构承载分布情况和部件应力,V500高速受电弓闭口运行性能略优于开口运行性能;受电弓平衡臂、弹簧盒、上臂杆和底架的应力主要由气动载荷引起;V500高速受电弓各部件均通过强度校核,满足静强度设计要求。  相似文献   

17.
采用三维定常、不可压N-S方程和k-ε双方程湍流模型,利用有限体积法对不同路况下运行的列车进行数值模拟计算,分析车速、风速及路堤高度对机车气动性能的影响。研究结果表明:路堤高度的升高、车速的变大、横风风速的增大、横风风向角的变大都会使得高速机车的气动力变大,但由于本文中车速相差不大,因此,车速的变化对高速机车气动力的影响相对其余几种因素较小。  相似文献   

18.
横风对列车通过曲线限制速度影响的数值研究   总被引:3,自引:0,他引:3  
在简化列车外形的情况下,针对列车在不同风速下的气动力进行计算.为计算气动力,将三维雷诺平均N-S方程(RANS)结合k-ε湍流模型,用有限体积法将控制方程离散求解.用SIMPLE法耦合压力-速度场.在得出气动力的基础上,使用本文推导的横风作用下列车通过曲线轨道的限制速度公式,分析了气动升力、气动阻力对限制速度的影响.模拟计算结果显示,增大列车运行速度或横风速度都会增大列车的气动升力和气动阻力,并使之呈非线性增大的趋势.列车在高速、大横风情况下运行,以上2种非线性风险的影响使行车的安全性受到严重的威胁.升力的作用一般使列车通过曲线轨道的限制速度降低,而阻力对限制速度的影响主要取决于风向.  相似文献   

19.
基于ALE方法的列车横风绕流动力学分析   总被引:2,自引:0,他引:2  
利用有限体积法对横风作用下列车周围的空气流场进行计算.结合车辆-轨道耦合动力学,采用任意拉格朗日-欧拉(ALE)方法处理列车与空气间存在的运动边界,实现了车辆系统动力学与计算流体力学之间的结合.以某国产客运列车为例,计算列车在20 m/s的横风作用下以160 km/h的速度运行时的动力学响应,给出列车周围的流场分布;分析了考虑与不考虑风-车之间流固耦合效应时,作用在车辆上的气动力和气动力矩的变化情况.结果表明,流固耦合效应对车体摇头力矩的影响比较大,而对于车体垂向、横向位移和加速度的影响甚微.  相似文献   

20.
风雨联合作用下高速列车受力数值模拟   总被引:1,自引:0,他引:1  
采用双方程湍流模型和离散相模型相结合的方法,对不同降雨强度、横风风速和车速下高速运动车辆周围的流场进行研究。研究结果表明:在横风作用下,下落的雨滴与高速运行的列车发生碰撞,雨滴飞溅、改变了车身表面的粗糙度和不平整性,导致车辆运行横向力、升力和倾覆力矩均随着车速、风速和降雨强度的增大逐渐变大;伴随着降雨过程的强横风作用,车辆所受的气动载荷与强横风的单独作用情况下相比稍微增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号