首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
研究目的:准确测算船撞作用下桥梁的结构动力响应,对评估因船—桥碰撞后桥梁响应而引起的列车脱轨分析具有重要意义。本文围绕铜陵公铁两用长江大桥论述船撞桥墩引起列车脱轨分析的一般流程,首先通过ANSYS/LS-DYNA非线性有限元软件模拟10 000 t级与5 000 t级船舶在最高、常规以及最低通航水位下满载正撞和侧桥向20°撞击桥梁的主塔和辅助墩,得出在各船撞工况下碰撞力-时程曲线。然后将船舶撞击时程曲线作为动力荷载输入至整桥有限元模型中,计算桥梁结构关键部位尤其是主梁的横向位移和加速度响应。研究结论:(1)在最高通航水位下,船舶满载正撞桥墩产生的撞击力最大;在该最不利工况下,撞击作用对桥梁结构动力响应以及列车的脱轨风险具有较大影响;(2)当3#主塔受到10 000 t级船舶撞击时,导致2#桥墩墩顶主梁的横向加速度达到0.922 m/s2,未超过列车脱轨加速度临界限制1 m/s2,列车脱轨概率极小;(3)通过简化的风险标准导出脱轨概率公式计算表明,该桥遭受到船舶撞击时,其列车的脱轨概率为9×10-5~1.5×10-4;(4)本文的研究结果可供航道上铁路桥梁因船舶撞击导致列车通行安全性研究参考。  相似文献   

2.
海域环境下,承台高程是桥梁设计和施工中的关键技术指标之一,对结构整体静动力特性、施工组织和技术经济性等均存在影响。以平潭海峡公铁两用大桥元洪航道桥主跨532 m斜拉桥的N03号主墩为例,研究桥墩承台顶高程从-16.5 m提高至+5.0 m对大跨度公铁两用斜拉桥的影响。结果表明:承台高程提高后,各设计荷载作用下的塔底内力发生较大变化,而塔顶位移、主梁内力和位移变化较小;桩基自由长度增大,全桥纵向刚度出现一定程度降低且某些振型出现的顺序发生了变化。跨海桥梁下部结构设计时应综合考虑结构受力合理性、施工方案可实施性及经济性等因素。  相似文献   

3.
某桥墩台桩基处于顺层岩体并为高边坡,由于工期限制,采用桩基与边坡加固共同施工的锚固桩跳桩防护施工方案。因为施工工序导致高边坡受力状态不同,结合有限元分析,得到在正常工况、锚索+奇数锚固桩加固边坡、坡面刷坡及承台开挖3种工况下,边坡稳定系数及水平方向位移。根据现场实测数据分析,采用锚固桩跳桩防护施工方案不但能保证顺层高边坡稳定性,同时可有效缩短工期,取得良好效果。  相似文献   

4.
张瑞霞 《铁道建筑》2012,(10):36-39
对于运营期的高桩码头承台桩基,在保障码头正常运营的前提下,承台桩基检测手段比较有限。某车渡码头承台出现明显位移变形,经现场考察,推测原因为桥墩承台上系船柱受船舶的长期连续系缆力作用所致,本文针对此种情况进行了三维有限元数值模拟分析,并进行了多种荷载工况下的计算对比,对桩基承载力进行了检算。通过计算分析,结合现场实际情况,对承台目前的偏移情况下桩基的承载力进行检算,得出原有桩体的承载力在目前桥座墩位移的情况下仍能满足要求的结论。同时分析了港口码头桩基可能发生的病害类型,给出了处理建议,可供类似工程参考。  相似文献   

5.
研究目的:为了顺应线路需要,高原地区修建的大量桥梁桩基工程处于高陡边坡之上。处于边坡上的桥墩桩基础由于边坡土体水平抗力对桩身影响而受力复杂。本文基于非线性有限元软件平台,结合黄土边坡上修建的铁路桥梁算例,建立考虑材料和桩土接触非线性影响的边坡—承台—桩基系统力学分析模型,目的在于从系统承载力、变形和应力等多方面研究边坡—承台—桩基系统在恒载和组合荷载工况下的力学行为。研究结论:通过对桥梁算例的分析,得出:(1)对于边坡上的桩基础桥墩,边坡水平抗力对桩基受力影响较大,桩基位移和应力均呈现出沿坡向的非均匀性;(2)对于多地层边坡,桩基位移和应力在土层分界处存在突变,桩基在分层部位存在受力不利区域;(3)本文研究方法和结论可为边坡上修建的桥梁桩基础的设计和力学分析提供理论借鉴。  相似文献   

6.
通过对四桩承台整体空间有限元应力分析,全面了解不同承台结构受力状况、桩基承台的横向和纵向应力分布情况,对比分析桩中心距不同时的有限元计算结果和截面法计算结果之间的差异,并提出相应的设计建议。  相似文献   

7.
某城市地铁盾构隧道近距离穿越城市立交桥桩基,最小净距仅1.56 m.应用 ANSYS 建立三维非线性有限元模型分析盾构隧道施工对桥梁桩基的影响.采用接触单元来模拟桩基与土体的相互作用,分析不同加固方式下盾构隧道掘进对近接桩基位移和内力的影响.计算结果表明:盾构隧道近接施工时,既有桩基会产生侧移和附加内力;对距离隧道较近且靠近隧道侧的桩基进行花管注浆加固效果不明显;对盾构隧道穿越地层进行加固能有效降低桩基的侧移和附加内力.  相似文献   

8.
为了解决工程中常见的单排桩设计问题,将单排桩、承台及联系梁视为整体进行受力分析,避免了传统设计方法过于保守或偏于不安全的弊端。首先,建立"单排桩-承台-联系梁"一体化模型,对影响组合基础受力的联系梁刚度、相邻基础刚度及基础不均匀沉降进行理论分析,找出相互影响关系。然后,建立"单排桩-承台-联系梁"SAP2000有限元模型,模型通过"桩-土效应"反映桩基和联系梁的组合刚度关系,并以强迫位移荷载的方式考虑基础不均匀沉降的影响,联系梁的受力可从模型中直接读取。实例分析表明,该方法可充分考虑桩基(桩-土效应)、承台及联系梁间的相互作用,真实地反映"单排桩-承台-联系梁"的受力状态,联系梁的设计截面更合理、可靠。  相似文献   

9.
为研究大跨度小半径曲线连续梁桥的地震响应,以现代有轨电车线路上一座(33.5+60.0+36.5)m三跨预应力混凝土曲线连续梁桥为例进行分析。采用MIDAS/Civil建立全桥有限元模型,计算不同约束条件下桥梁动力特性,并采用反应谱法对桥梁在地震作用下的位移和内力进行分析。分析结果表明:采用刚构-连续组合的曲线梁桥可以获得较好的内力响应及位移响应,有利于桥梁的抗震;对于大跨度、小曲线梁桥,位移响应最大时和内力响应最大时分别对应不同的激励角度,在考虑水平地震作用时应按不同的激励角度进行分析。对刚构-连续组合曲线梁桥采用固结刚度较大的桥墩,可以提高整个桥梁的刚度,减少整体的位移,有利于桥梁抗震。  相似文献   

10.
研究目的:基于大地震中铁路桥梁因为墩梁横向位移过大造成的落梁等破坏,本文提出在T梁和墩顶之间增设黏滞阻尼器对桥梁进行减震控制的加固方案。以采用圆端型桥墩的某混凝土简支双片式T梁铁路桥为例,通过ANSYS软件建立桥梁结构模型,选取4条地震动记录,分析地震作用下不同墩高时桥梁的动力响应;选取两种液体黏滞阻尼器的加固布置方案,分析不同的阻尼器布置位置对桥梁墩顶的横向位移以及墩梁横向相对位移的影响规律,研究阻尼器不同设计参数对桥梁耗能减震的效果,结合阻尼器优化得到的参数并最终选定一种效果较好的加固方案。研究结论:(1) 8度罕遇地震作用下,墩顶位移和墩梁相对位移较大,超出了铁路桥梁的允许位移值;(2)随着墩高的增大,墩顶位移随之增大,而墩梁相对位移的变化规律不明显;(3)本铁路桥梁加固时液体黏滞阻尼器的推荐参数为阻尼速度指数a=0.3,阻尼系数C=5 000 k N·(s/m)a;(4)液体黏滞阻尼器能够显著降低地震作用下的墩顶位移和墩梁相对位移,消能减震作用显著;(5)本研究结论可用于既有铁路桥梁的抗震加固及减震控制。  相似文献   

11.
某市地铁1号线盾构隧道近距离穿越一座跨河桥梁,隧道近距离施工可能引起地层发生变形,导致既有桥梁桩基产生附加内力和变形,影响既有桥梁结构的正常使用.采用 ANSYS有限元方法建立三维非线性模型对盾构穿越河道施工进行动态模拟,并从地表沉降形态、桥梁桩基的位移和倾斜变化等方面进行了分析.计算结果表明,地铁一号线过河段施工会导致地表和桩基产生一定沉降,桩基还会产生倾斜,但管片的轴力和弯矩均在合理的范围内,能确保桥梁整体安全性.  相似文献   

12.
基于风险评估的桥梁船撞角度分析   总被引:1,自引:1,他引:0  
近年来世界范围内发生了多宗船撞事故,合理地对桥梁进行船撞风险评估是非常重要的。AASHTO船撞设计指南中模型是最常用的计算桥梁年倒塌频率的模型。然而,与桥梁倒塌频率有关的船撞力计算公式中只考虑了船舶的速度,并未考虑船舶撞击桥梁的方向。以椒江二桥为工程背景,采用美国AASHTO船撞设计指南中计算桥梁年倒塌频率的模型对桥梁船撞角度进行分析。在未考虑防撞系统和考虑防撞系统情况下,分析船舶撞击桥梁时的角度对椒江二桥的年倒塌频率的影响。结果表明,在未考虑防撞系统情况下船舶撞击椒江二桥的角度不能超过31°,在考虑防撞系统情况下船舶撞击椒江二桥的角度不能超过37°,否则会超过椒江二桥可接受的年倒塌频率。建议对超过该角度的船舶进行警示,以保证桥梁和船舶的安全。  相似文献   

13.
沈阳市迎宾路高架桥工程部分线位与地铁1号线重叠,桥梁基础为避开地铁车站及区间,采用大跨度预应力承台梁接桩基方案跨越地铁结构。本文以该工程为背景,采用实体单元建立有限元模型,对典型跨度承台梁的施工及使用阶段进行受力分析。计算结果表明,设计方案安全可靠。为保证承台梁施工及运营期间地铁车站的结构安全,采用压顶梁、桩基础钢护筒跟进工艺、承台梁分部浇筑等施工措施,有效解决了车站结构主体抗浮问题,确保桥梁结构荷载不传递至车站结构主体。  相似文献   

14.
研究目的:针对武汉站联合桩基一般承台面积较大、柱底反力复杂、偏心效应显著,且大多承受八字斜柱反力,水平推力很大,本文分别按刚性桩基承台和柔性桩基承台两种模式进行受力分析。研究结论:刚性计算主要是确定反力合理形心,按反力合理形心与桩基形心重合进行布桩,并检算各荷载组合下桩基受力情况;当反力合理形心无法与桩基形心重合时,按偏心荷载计算桩基受力。柔性计算可以充分考虑承台刚度、土层约束、扭矩荷载等因素,采用有限元计算得到桩的竖向、水平受力情况和桩身弯矩、支座位移等,可与刚性计算结果对比校核,并对进一步计算桩身裂缝、上部框架结构等提供数据。  相似文献   

15.
针对目前对桥墩受船舶撞击的影响参数尚不明确的情况,以一座千米级公铁两用斜拉桥为工程背景,基于船舶自动识别系统数据统计分析结果,得到船舶船型、吨位、航速等参数并开展了船桥碰撞分析,提出了桥梁防船撞设施设计方法,通过有限元仿真分析对提出的防撞设施性能进行了不同工况下的计算分析.研究结果表明:未安装防撞设施时,船舶与桥梁碰撞...  相似文献   

16.
合肥轨道交通1号线三期瑶海公园站—合肥站区间隧道正下穿未预留条件且经过两次改造的合肥站站房。为保证盾构顺利下穿,采用数值模拟计算,分别分析了站房基础存在既有沉降、站房无加固时由盾构下穿引起的站房基础沉降及站房上部结构内力变化、不同站房加固方案对应的结构内力变化等问题。研究结果表明:针对不同地层损失率,在站房无加固条件下,盾构隧道下穿会导致站房部分结构承载力不足;提出新增桩基+预应力梁的加固方案,经验算后证实变形及结构内力能满足要求。  相似文献   

17.
研究目的:高墩桥梁稳定性一直是影响桥梁结构安全的关键因素,如何在保证桥梁外形美观、结构受力合理的情况下提高高墩桥梁的稳定性,是工程技术人员一直在探讨的问题.本文以京承三期清水河2#桥为工程背景,采用三维有限元分析软件SAP2000对双肢薄壁高墩刚构桥进行空间稳定性分析,并对比分析在有无横系梁的情况下最大悬臂施工阶段和成桥阶段桥梁的稳定性.研究结论:初步得出了墩间横系梁对双肢薄壁高墩桥梁稳定性的影响:墩间横系梁主要对顺桥向的桥梁稳定性贡献较大,对桥梁横向稳定性基本上没有影响;随着墩间横系梁数量的增加,对稳定性的贡献也趋于稳定.恰当地设置横系梁能有效地提高双肢薄壁高墩刚构桥梁的稳定性,但随着横系梁数量的增加稳定性提高并不明显.  相似文献   

18.
研究目的:高墩桥梁稳定性一直是影响桥梁结构安全的关键因素,如何在保证桥梁外形美观、结构受力合理的情况下提高高墩桥梁的稳定性,是工程技术人员一直在探讨的问题。本文以京承三期清水河2^#桥为工程背景,采用三维有限元分析软件SAP2000对双肢薄壁高墩刚构桥进行空间稳定性分析,并对比分析在有无横系梁的情况下最大悬臂施工阶段和成桥阶段桥梁的稳定性。研究结论:初步得出了墩间横系梁对双肢薄壁高墩桥梁稳定性的影响:墩间横系梁主要对顺桥向的桥梁稳定性贡献较大,对桥梁横向稳定性基本上没有影响;随着墩问横系梁数量的增加,对稳定性的贡献也趋于稳定。恰当地设置横系梁能有效地提高双肢薄壁高墩刚构桥梁的稳定性,但随着横系梁数量的增加稳定性提高并不明显。  相似文献   

19.
高速铁路南京大胜关长江大桥地震响应分析   总被引:1,自引:0,他引:1  
采用大型通用有限元软件ANSYS,建立南京大胜关长江大桥主跨的连续钢桁架拱桥的有限元模型,运用反应谱分析法对全桥结构进行地震响应分析.选用经过加速度幅值调整的El-Centro地震波作为输入地震波,进行大跨度连续钢桁架拱桥一致激励下以及4种不同波速地震行波作用下的全桥结构内力和位移时程响应分析.分析结果表明:南京大胜关桥的整体结构较柔,采用反应谱法计算地震波作用下的桥梁地震响应和采用时程分析法得到的一致激励和多点激励下的桥梁地震响应差别较大,多点激励下的横桥向和竖向地震位移响应是一致激励地震时程计算得到的位移响应的2~3倍;在地震波波速为500或1 000 m·s-1时,桥梁结构关键位置杆件的弯矩达到最大.因此,在进行大跨度拱桥的地震响应动态时程分析时,应该考虑多点激励,以反映桥梁结构在真实地震作用下的实际受力状态和变形性能.  相似文献   

20.
平潭海峡公铁两用大桥航道桥基础设计与施工创新技术   总被引:2,自引:1,他引:1  
平潭海峡公铁两用大桥为国内第一座跨海峡公铁两用大桥,桥址海域风大、浪高、水深、流急、潮汐显著,且岩面倾斜起伏大、裸岩硬岩分布广,气象水文及地质条件均十分复杂,尤其是桥址海域波流力巨大,为桥梁下部结构设计和施工带来前所未有的困难。为解决风浪作用和通航船撞力作用,3座大跨度通航孔斜拉桥在基础设计和施工中采用多项创新技术,首次选用4.5 m的钻孔桩;为解决复杂海域大直径钻孔桩难题,研发了KTY5000型动力头钻机和相关配套的打桩设备;为克服波浪力作用,部分深水裸岩区域采用导管架辅助建立施工平台;为适应桥位独特的海洋环境,3座大跨度通航孔斜拉桥主塔墩承台均采用圆端哑铃形高桩承台,承台顶露出高潮位以上,承台施工采用集主体防撞结构与施工围堰一体的防撞箱围堰结构,永久结构与临时结构相结合,节约材料的同时降低了施工的安全风险性。其大型防撞箱围堰采用工厂整体制造、整体吊装、整体下放,实现模块化、标准化施工,哑铃形承台系梁范围采用无封底混凝土施工创新技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号