首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钢-混凝土组合桁架梁上弦端节点受力复杂,是组合桁架结构受力的关键部位.以西平铁路桥梁钢-混凝土组合桁架节点为原型,设计制作了3个耳板式节点的1:2缩尺模型,进行水平静力性能试验和有限元分析,研究钢-混凝土组合桁架节点的应变发展规律、极限承载力、破坏模式和荷载-位移曲线等力学性能.研究表明:耳板式钢-混凝土组合桁架节点极限承载力和刚度满足设计要求;PBL连接件具有较好的抗剪能力;节点的薄弱部位为弦杆核心区混凝土;节点的破坏模式主要有弦杆混凝土开裂破坏、腹杆屈曲破坏、腹杆与耳板连接处屈服等,因此提高混凝土强度和节点配筋率,增加腹杆厚度有助于提高整个节点的承载力.  相似文献   

2.
银川至西安高速铁路渭河特大桥主桥设计方案受既有公路桥、防洪评价、美观性等多因素控制,上部结构首次采用3×60 m及4×60 m等跨度钢腹杆组合连续梁结构,参考既有类似结构尺寸并结合本桥实际情况拟定出钢腹杆组合结构的桁高、桁式、节间长度、节点形式等总体构造。根据施工方案采用有限元构建全桥杆系模型和实体模型,对该新型结构进行静力计算、实体分析,从总体上把握该结构受力性能。采用大比例缩尺模型试验对节点承载能力和破坏形态进行模拟。研究结果表明:采用钢腹杆组合结构能有效减轻结构自重,减小桥墩尺寸,其刚度指标、局部应力及节点区钢结构和混凝土协同工作能力均满足规范要求,结构受力性能优越,是一种值得推荐的桥型。  相似文献   

3.
为考察西安—平凉铁路桥梁上钢-混凝土组合桁架节点的受力性能,进行2个耳板式节点的小比例尺模型试验.介绍了节点的试验方法和结果,描述了整个加载过程的节点行为,讨论了节点的受力性能、承载力和破坏模式.试验结果显示节点的失效模式可能有混凝土开裂破坏、内置钢筋屈服和腹杆屈曲.应用有限元软件对试件进行全过程数值模拟分析,计算结果...  相似文献   

4.
钢-混凝土组合桁架是一种由钢腹杆和混凝土弦杆组成的新型结构形式。进行了2种不同构造的节点模型试验,介绍了试验方法和结果,描述了节点在加载过程的力学行为,对比了不同节点的受力性能、承载力和破坏模式。试验结果显示节点的失效模式可能有:混凝土开裂破坏、节点板屈曲和受拉钢腿螺栓滑移。应用有限元软件ABAQUS对试件进行全过程数值模拟分析,对比不同的有限元分析结果,明确了不同节点的薄弱部位。研究成果可以为该实际工程和同类工程节点设计提供试验参考和理论依据。  相似文献   

5.
通过多组缩尺比例为1∶3的外接式钢—混凝土组合桁架与钢桁—槽型梁组合结构的单调静力试验,研究节点在加载过程中的失效模式、极限承载力和破坏机理。研究结果表明:外接式钢-混凝土组合桁架破坏模式有混凝土开裂,节点板受压部位局部屈曲,螺栓滑移,节点板被拉断,混凝土与节点板接触面应力集中;钢桁-槽型梁组合结构破坏模式有腹杆失稳破坏,混凝土与节点板接触面应力集中;腹杆加固后钢桁-槽型梁组合结构破坏模式有螺栓滑移,节点板被拉断,混凝土与节点板接触面应力集中。应用有限元软件ABAQUS对各节点进行模拟分析,试验与模拟分析均表明:增加混凝土高度以及节点板尺寸的钢桁-槽型梁组合结构承载力要明显高于节点部位尺寸较小的外接式钢-混凝土组合桁架,在整体尺寸不变的情况下,可通过改变各部件所占整体的刚度比来达到控制节点破坏模式的目的。  相似文献   

6.
为研究外接式钢桁-槽型梁组合桁架节点的受力性能、破坏模式以及极限承载力,对缩尺比例为1∶3的节点模型进行单调水平静力加载实验。介绍节点的模型设计、加载过程和测点布置情况;利用混凝土上弦杆自由端中点测得的位移绘出荷载-位移曲线得出外接式节点的极限承载力;同时对比各部件有限元分析结果,找出节点试验的薄弱部分,并提出相应的改进意见。研究结果表明:节点承载力较高,PBL剪力键传力效果明显;在不改变原缩尺比例的情况下通过在钢腹杆内增加12 mm厚的加劲肋能有效提高腹杆稳定性与节点极限承载力。研究成果可为以后实际工程设计以及理论研究提供帮助。  相似文献   

7.
为改善交错桁架结构中斜腹杆的受力性能,提高该结构的耗能能力,结合美国一工程实例,设计单榀单层的交错桁架结构基本试件,研究其单调及循环加载时的受力性能。在此基础上设计另外2组不同刚度斜腹杆的对比试件,然后采用ANSYS对3组试件进行系统地对比分析,研究交错桁架结构的受力性能。研究结果表明:通过改变斜腹杆的刚度,使结构的塑性铰限定于预期设定的部位,建立合理的损伤机制,既能充分利用结构良好的抗侧移性能又能充分发挥结构的延性,可以在很大程度上提高交错桁架结构的抗震性能,为结构在抗震区的设计提供参考。  相似文献   

8.
研究目的:(1) 研究确定腹杆与节点板间合理的连接方式,使腹杆与节点板间传力简捷明确,腹杆端部应力分布均匀,提高腹杆抗疲劳性能;(2) 研究确定横梁与弦杆间合理的连接方式,使横梁上翼缘接头构造满足结构疲劳性能要求,避免与之连接的下弦杆竖板发生层状撕裂破坏;(3) 研究确定钢桁结合梁桥整体节点细节构造,使受力复杂的整体节点传力简捷明确,避免应力集中,改善结构疲劳性能.研究结论:(1) 腹杆与节点板间采用全截面拼接,腹杆应力分布均匀,节点刚度大,杆件抗疲劳性能好.(2) 横梁上翼缘接头板与弦杆间采用大弧过渡及熔透焊缝,焊缝质量等级要求为Ⅰ级,焊缝端部要求打磨锤击处理,可满足此处焊接疲劳性能要求.弦杆与横梁相交处,弦杆竖板突出30 mm并采用Q370qE-Z25钢材,可避免此处弦杆竖板发生层状撕裂.(3) 在整体节点及其它钢结构设计细节中,贯彻大弧、缓坡、打磨、锤击等防裂、防断措施.可有效提高整体节点和其它细节构造的疲劳性能,满足结构抗疲劳性能要求.  相似文献   

9.
研究对象为任意节点连接和任意支撑的平面框架。一般梁单元由等截面直杆及其杆端的轴向弹簧、切向弹簧和转动弹簧组成,推导得到此类单元的刚度矩阵、单元在8种基本荷载作用下的等效节点荷载。采用Matlab语言编写了适用于一般节点非线性连接框架的静力分析程序,非线性形式为指数函数或多项式函数,可以得到结构不同连接刚度下的节点位移、杆端位移和杆端力。算例显示出节点柔度对结构受力和变形的影响。  相似文献   

10.
济南黄河公铁两用桥主桥结构型式研究   总被引:1,自引:1,他引:0  
研究目的:石济铁路客运专线济南黄河公铁两用桥为刚性悬索加劲连续钢桁梁桥,其结构形式在我国铁路桥梁上尚属首次采用,故以此为工程背景,对此种结构体系的主桁片数及公路桥面板的形式进行分析研究,为下一步的工作打下了良好基础,为类似桥梁的设计提供参考。研究结论:(1)与3片主桁方案相比,2片主桁方案桁架腹杆的最大轴力增加了24.1%,并且框架效应表现明显,竖杆的面外弯矩增加很大;(2)3片桁桥面系荷载传递直接,且提供结构刚度大,3片桁方案比2片桁方案挠跨比小14%,轨道中心部位的梁端转角低12%;(3)由于正交异性钢桥面板的结构自重较纵横梁混凝土组合桥面板的少35%左右,故结构受力有较大改善,前者比后者上弦杆杆件轴力最大值减少了34.6%,而腹杆杆件轴力最大值减小了10%左右。  相似文献   

11.
商合杭高速铁路芜湖长江公铁大桥主桥为主跨588 m的高低矮塔钢桁梁斜拉桥,其主梁采用2片主桁的钢桁梁,上层板桁组合、下层箱桁组合,斜拉索锚固在桁架腹杆外侧的下层钢箱内。在"主力+附加力"组合下,斜拉索的最大单索索力达16 000 kN,因此,设计采用单个锚点锚固2根斜拉索的锚箱式并排拉索索梁锚固结构。为研究该类型结构的受力特性,建立细部有限元模型进行计算分析,得到各构件的受力特点与传力特性,验证了设计的可靠性。  相似文献   

12.
钢-混凝土组合桁架外接式节点由钢腹杆和上下混凝土弦杆组成,节点板包括内置混凝土部分和外露部分。采取荷载位移曲线对是否考虑钢节点板内置部分与混凝土之间的粘结效应进行对比分析。利用弦杆近加载端荷载位移曲线对影响节点承载力的单因素进行分析。采用数理统计中的正交试验方法对影响节点承载力的因素进行多因素多水平正交分析,同时讨论因素之间的交互作用并给出最优解。在特定弦杆截面尺寸下,研究结果表明:钢节点板厚度和钢腹杆壁厚对节点的承载力影响较大,二者间存在明显的交互作用。研究成果可为以后实际工程设计以及理论研究提供帮助。  相似文献   

13.
为了研究地铁地下车站在地震荷载作用下的受力情况,以青岛地铁某明挖地下车站为例,通过静力法和时程分析法分别建立二维数值模型,对明挖地下车站标准断面的受力进行结构抗震性能模拟分析;对车站大里程端节点结构建立三维数值模型,进行结构抗震性能模拟分析。车站标准断面二维模拟计算结果表明,时程分析法与静力法2种计算方法得到的内力计算结果比较接近,顶板跨中、底板支座、底板跨中、侧墙支座、侧墙跨中均受静力法计算结果控制,顶板支座、中板支座、中板跨中受时程分析法控制,对比基本荷载组合、准永久荷载组合的内力及相应的配筋计算,地震荷载组合对车站结构各构件承载力并不起控制作用;大里程端节点结构三维模拟分析结果表明,车站结构各构件满足抗震设计要求。  相似文献   

14.
板桁组合结构体系受力特性及计算方法研究   总被引:23,自引:2,他引:21  
对板桁结结构的各结构体系受力分析的目的是为了在设计过程中能根据各体系的受力特点,对不同的构件进行有针对性的设计。文中针对芜尖长江大桥连续梁的板桁组合结构各体受受力的情况,在板桁组合结构计算分析中,将结构划分为3个体系,对各体系的受力情况进行了具体分析计算,认为板桁组合结构第一体系受力的最主要的特点,是混凝土桥面作为主桁上弦杆缘的一部分参与结构整体受力,在恰当考虑桥面有较宽度后,第一体系的受力分析可以按常规的杆系结构分析办法处理,第二系为由纵横梁及桥面板构成的加劲板,可采用叠加桥机板单元的网格梁组合模型进行分析,而第三体系受力主要是分析其在轮压荷载下的受力状态,分析时应按实际情况考虑多个车轴下的轮压布置,并考虑纵梁支承刚度差异带来的影响。  相似文献   

15.
广佛江珠城际铁路劳劳溪水道主桥跨越通航水域,采用孔跨布置为(110+204+110)m的连续梁-钢桁组合结构。主梁采用变高度单箱双室预应力混凝土箱梁;中跨混凝土梁部设置加劲桁,与主梁采用外接式节点连接,节点板一半外露,采用高强度螺栓与腹杆连接,节点板另一半伸入主梁,采用PBL键与混凝土连接。采用有限元法建立全桥模型,确定加劲桁设置范围及桁高,研究加劲桁对结构刚度和内力的影响,并分析主桥静力、动力特性。结果表明:加劲桁高12 m,宽11 m,长168 m;连续梁-钢桁组合结构受力合理,通过设置加劲桁提高了桥梁竖向刚度、改善了梁端转角;该结构可有效降低结构建筑高度,满足机场限高要求,具有优良的动力性能和可靠的稳定性,各项设计计算值均满足规范和列车高速运行对桥梁设计的要求。  相似文献   

16.
近年来采用空间杆系模拟曲线梁结构受力时假定梁单元形心与剪切中心重合,无法计算约束扭转效应及翘曲和畸变,结构计算结果与实际受力存在偏差,因此,应采用实体有限元进一步模拟结构真实受力。本文在对预应力混凝土曲线连续箱梁常见支座病害分析的基础上,采用实体有限元建立结构计算模型对主梁施工阶段支座反力的变化进行分析,并与杆系计算结果比较。研究结果表明:曲线梁桥扭转效应和平面内变位是其支座病害出现的直接原因,宜在设计中通过合理设置主梁支座及限位来消除其对结构的不利影响;相对来说,采用实体有限元比采用杆系有限元计算曲线梁结构受力更趋合理。  相似文献   

17.
为避免焊缝交叉,钢桁梁全焊桁片中,腹杆与节点连接采用带半圆过焊孔的焊接构造。为评估钢桁梁全焊桁片腹杆与整体节点焊接细节抗疲劳性能,对其进行有限元数值模拟及疲劳试验研究。根据实际焊接细节结构特点,基于应力场相似原则完成试验模型设计。利用ANSYS建立实桥结构及试验模型的有限元模型,对应力分布状态及应力集中系数进行比较分析。采用3组9个试件,完成不同应力幅下钢桁梁全焊桁片腹杆与节点连接构造典型焊接细节的疲劳试验,通过数据拟合得到该焊接细节的S-N曲线。结合其他既有疲劳试验数据及欧洲规范、日本规范对该焊接细节疲劳性能进行评估。结果表明:过焊孔与翼缘焊接部位存在较大的应力集中,对焊接节点的疲劳性能有较大削弱;反复荷载作用下,过焊孔与翼缘板交接焊趾处首先产生疲劳裂纹。  相似文献   

18.
针对我国铁路桥梁中应用的钢—混凝土组合结构,根据推出试验结果,采用最小二乘非线性拟合得到C 50混凝土中13和22栓钉的荷载—滑移关系式。通过群钉组合结构极限承载力试验,并结合所提出的群钉组合结构有限元模拟方法,研究钉群平均极限承载力的折减、钉群受力分布及其影响因素。研究结果表明:在群钉组合结构中,钉群平均极限承载力较单钉极限承载力有较大程度的折减,最多达到18%;钉群受力具有明显的不均匀性,由上到下呈马鞍形分布,随着荷载的增加,栓钉受力发生重分布,接近极限荷载时,各栓钉受力基本均匀。栓钉刚度、加载方式等都是钉群受力不均匀性的主要影响因素。栓钉刚度越大,钉群平均承载力折减越多。加载方式对群钉组合结构极限承载力基本没有影响,但在荷载较小时对钉群受力不均匀程度的影响较大,而随着荷载的增加,其影响逐渐减小。有限元分析结果与试验结果吻合良好,验证了所提出的群钉组合结构有限元模拟方法正确、可行。  相似文献   

19.
钢桁梁腹杆插入式节点杆端应力分析与探讨   总被引:1,自引:0,他引:1  
研究目的:为便于制造与安装,大跨钢桁连续梁桥往往在采用整体节点,腹杆与主桁节点连接时,腹杆插入节点板中,采用高强螺栓两面连接。由于仅连接杆件的两个面,另外一面(或两面)不直接承受节点板传递的荷载,必然存在剪力滞效应。通过建立钢桁梁腹杆的几种典型截面的有限元模型,研究两面连接腹杆端部的应力分布,从而掌握腹杆端头板件应力分布的规律并用于指导钢桁梁桥节点设计。研究结论:杆件端部最大正应力均发生在螺栓群末端;一般来说,杆件板厚越大,螺栓连接沿杆件长度方向的排数越多,最大正应力与名义正应力的比值越小;截面形式变化、板件厚度变化不会对最大剪应力的发生部位产生影响;杆件中部,截面应力趋于均匀,剪力滞效应不显著。  相似文献   

20.
钢管混凝土柱和钢梁组成的组合结构凭借其优越的力学性能和抗震性能,在实际工程中得到广泛的应用。节点的构造形式决定了梁柱连接处内力的传递方式。因此,对构造简单,受力合理的节点进行研究,是推动钢管混凝土柱-钢梁组合结构应用和发展的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号