首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
选择合理的屈服准则分析寒区隧道弹塑性解能为寒区隧道稳定性分析提供理论基础。为此,结合Mohr-Coulomb准则(即M-C准则)和外接圆Drucker-Prager准则(即D-P准则)分析得到考虑中间主应力效应的统一强度准则,建立寒区隧道弹塑性力学计算模型,基于线性非关联准则推导得出考虑围岩不均匀冻胀特性的寒区隧道应力场及位移场的弹塑性统一解,并对所得统一解答式进行算例及参数分析。研究表明:采用M-C准则计算偏于保守,而利用外接圆D-P准则计算偏于危险,考虑中间主应力效应能充分发挥围岩承载潜能,有效缩小塑性半径,缓解衬砌冻胀变形;统一强度理论参数b保持常数时,初始地应力、衬砌强度、不均匀冻胀系数及围岩体积冻胀率等参数的变化对寒区隧道应力及塑性半径变化影响显著。该研究成果可丰富寒区隧道工程设计理论。  相似文献   

2.
针对锚杆加固条件下围岩产生较大屈服的问题,通过建立锚杆加固塑性区径向和环向的等效弹性模量计算方法,充分考虑锚杆加固对塑性区弹性应变增量的影响,并基于广义Hoek-Brown强度准则与有限差分原理,提出应力增量法并求得注浆锚杆加固下应变软化围岩弹塑性应力、位移和塑性区半径的数值解。通过与已发表结果的对比,同时结合现场实测数据,验证本文所提理论方法的可靠性。研究结果表明:采用本文提出的理论方法进行围岩较大屈服变形评估将会获得相对较大的结果,因此,据此进行类似工程条件下隧道的注浆锚杆加固设计将会更加安全。  相似文献   

3.
软岩通常具有较强的蠕变性,深部软岩隧道的围岩收敛和支护受力往往表现出明显的时效特性。因此,考虑隧道掌子面推进的同时,运用流变理论对深部软岩隧道的围岩应力变形时效规律进行分析具有重要意义。研究针对深埋软岩中圆形隧道的纵向开挖过程,同时考虑掌子面推进引起的应力释放效应和围岩自身的蠕变性,推导出隧道纵向施工中围岩应力变形的黏弹-塑性时效解。解答中假定围岩服从Burgers-MC黏弹-塑性模型(CVISC),隧道纵向为连续不间断开挖。基于所提出的理论解,对新疆特克斯软岩隧道开挖过程中的围岩变形应力进行了初步预测和分析;同时,通过对比FLAC数值模拟结果和现场监测数据,验证了解答的正确性和可靠性。进一步,基于解答深入研究深部黏弹-塑性软岩中隧道围岩的应力、变形及黏塑性区域随时间和开挖过程的演化规律。研究结果表明:黏弹性区和黏塑性区边界上应力是定值,与黏塑性区大小无关;在隧道开挖阶段,应力释放引起的围岩位移占主要成分,后期应力释放完成后,围岩蠕变变形占主要部分。本解答为深埋软岩隧道施工过程中的围岩收敛变形和应力预测提供了理论方法。  相似文献   

4.
在分析中主应力对隧道围岩强度影响的基础上,采用FLAC3D有限差分元软件,建立考虑中主应力的岩体强度准则本构模型,并同摩尔库伦准则相比较,研究考虑中主应力后对隧道围岩稳定性的影响。结果表明:考虑中主应力后,计算得到的岩体强度较不考虑时显著增加,当中主应力大于等于岩体抗压强度时,围岩强度提高75%~200%;若围岩服从摩尔库伦准则,则在一定数值范围内,中主应力不影响隧道中围岩的应力分布,且对拱顶沉降及塑性区也几乎没有影响;若围岩服从考虑中主应力的岩体强度准则,则随着中主应力的逐渐增大,围岩强度逐渐增大,拱顶沉降、开挖扰动范围和塑性区半径均逐渐减小。因此,在隧道侧向应力较大时,采用考虑中主应力的岩体强度准则进行数值模拟,更能准确地反应围岩的稳定性。  相似文献   

5.
为研究隧道工程中常见的非圆形毛洞围岩的应力和塑性区分布,采用复变函数方法,得到平面应变状态下受双向挤压应力作用的毛洞围岩应力解析解,并将其代入Drucker-Prager屈服准则,估算围岩的塑性区范围。以工程中常见的大断面双线铁路隧道为例,先通过搜索边界映射点的方法得到隧道毛洞的映射函数;再求得隧道毛洞附近围岩的应力分布,对推导出的非圆形隧道毛洞围岩应力解析解的正确性进行验证;最后分竖向挤压应力较小与较大2种情况,讨论侧压力系数对隧道毛洞围岩塑性区的影响。结果表明:离毛洞边4倍毛洞宽度处,应力值稳定,趋于所加荷载;当竖向挤压应力较小或较大时,侧压系数的改变分别会影响塑性区的位置或形状;拱腰处塑性区主要由竖向挤压应力产生,而拱顶与仰拱处塑性区则主要由水平挤压应力产生;在隧道设计和施工过程中,当围岩侧压系数较小或较大时,须分别在拱腰、拱顶与仰拱处加强支护。  相似文献   

6.
为分析软弱围岩隧道在不同开挖方法过程中稳定性以及拱顶沉降变化规律,以某隧道工程实例为背景,借助有限差分软件FLAC~(3D)数值模拟并和实际监测数据对比分析,研究软弱围岩隧道在CD法和台阶法两种不同开挖方法施工过程中围岩变形、应力变化和围岩塑性区分布规律。实际监测数据和模拟计算结果均表明,采用CD法开挖断面关键点位移和应力明显小于台阶法,随开挖步影响范围也比台阶法要小。总之CD法较台阶法能更好控制围岩变形和应力发展,塑性区分布范围也明显小于台阶法。  相似文献   

7.
新建隧道临近既有隧道时,隧道施工会引起围岩的应力重分布,从而对既有隧道产生影响。为了研究新建隧道施工对既有隧道的影响,以黄土地区某隧道工程为依托,利用有限元软件,通过数值模拟计算,分析开挖方法及支护措施对既有隧道最终位移场、应力场分布及围岩塑性区演化的影响,得出如下结论:采用台阶法时会对既有隧道产生扰动,引起既有两隧道的最大位移分别为0. 97 mm和2. 56 mm,均出现在拱顶处,总体位移较小;采用3种不同的支护措施时,最大应力均出现在距离最近既有隧道的仰拱处(不超过600kPa);塑性区主要分布在最近既有隧道的仰拱处,但不会引起塑性破坏;3种支护方案对应的整体模型最大总位移分别为80. 3 mm、77. 8 mm和89. 2 mm,管棚超前支护对变形控制效果明显。  相似文献   

8.
为研究片理化玄武岩隧道的大变形影响因素,本文依托某隧道片理化玄武岩段,通过数值模拟分别对不同埋深、支护强度和围岩级别条件下的围岩变形进行分析。研究结果表明:(1)地应力、支护强度和围岩级别是片理化玄武岩隧道大变形的主要影响因素;(2)当地应力增大时,洞周各部位围岩变形量增大,围岩塑性区范围扩大;(3)当隧道支护强度增强时,洞周各部位围岩变形量减小,围岩塑性区缩小;(4)当围岩级别增大时,洞周各部位围岩变形量增大,围岩塑性区扩大。研究成果可为片理化玄武岩隧道大变形控制研究提供借鉴。  相似文献   

9.
基于Brown等提出的应变软化模型及逐步应变计算方法,采用无量纲分析法,获得基于Mohr-Coulomb准则下的应变软化围岩的应力及位移场分布的无量纲解。与已有理论结果的对比分析表明:采用基于无量纲法的逐步位移法求解软化围岩应力与位移是准确有效的。对支护力及残余区控制系数的影响分析表明:支护力和残余区控制系数的增大会减小围岩塑性区范围。该结论可为隧道支护力大小的设计提供参考。  相似文献   

10.
围岩是隧道稳定性控制的主要对象,针对铁路隧道建设中高地应力软弱围岩的重大理论与实践难题,本文开展了理想连续介质条件下,围岩塑变形加速发展或塑性应变突变的稳定性极限状态研究。提出:(1)开挖过程中应充分发挥围岩的自承能力,允许围岩发生一定程度的塑性变形,但不能因过大变形让围岩进入松动状态,以保持围岩的稳定性;(2)当围岩塑性过程发展到塑性应变突变或变形加速发展时,围岩材料将进入塑性流动状态。此时,围岩因过大变形而松动,扰动后极易失稳、坍塌。(3)近区围岩塑性流动松动、深部为连续介质条件下,高地应力软岩大变形隧道稳定性的理论分析与判据方法有待深入研究。  相似文献   

11.
文献[6]在考虑软岩的剪胀、蠕变和非线性破坏准则等影响后,推导隧道的围岩变形表达式.在此基础上,考虑软岩的塑性大变形特性后,分别根据相关联与非关联流动法则,推导出圆形隧道位移解.通过计算得出:在软弱的围岩或土中,剪胀角的大小对隧道塑性区软岩位移影响很大.  相似文献   

12.
为优化在建交叉隧道施工顺序,对不同近接施工影响程度进行动态分区以便于施工管理。以在建的珠海大横琴山一号隧道与珠机城际隧道交叉段为工程背景,其中珠机城际隧道(断面小)在上方,而大横琴山一号隧道(断面大)在下方,应用数值仿真软件建立“先上后下”及“先下后上”2种施工工况模型。对比分析不同施工顺序下立交隧道纵向位移、横断面位移、拱顶沉降、仰拱位移、塑性区及支护结构应力等变化规律。讨论地层围岩位移分区准则与既有结构强度分区准则。研究后行隧道掌子面施工至交叉点不同距离时,先行隧道位移以及结构强度的动态分区情况,其中红区为特危险区、黄区为危险区、白区为注意区。研究结果表明:“先下后上”施工比“先上后下”施工要好;现场采纳了此方案,先施工下方大横琴山隧道,然后再施工上方珠机城际隧道。“先下后上”施工时,上部隧道开挖至交叉点前6 m至交叉点后12 m对下部隧道影响明显;并以下部隧道距中轴线前18 m至中轴线后10 m范围内作为特危险区,同时上部隧道开挖至距中轴线前后0.25D(D为开挖隧道跨度)范围内需加强监控量测,以保证隧道安全。“先上后下”施工时,以上部隧道距中轴线前27 m至中轴线后13 m作为...  相似文献   

13.
软岩隧道的围岩变形计算   总被引:4,自引:0,他引:4  
文献[6]在考虑软岩的剪胀、蠕变和非线性破坏准则等影响后,推导隧道的围岩变形表达式.在此基础上,考虑软岩的塑性大变形特性后,分别根据相关联与非关联流动法则,推导出圆形隧道位移解、通过计算得出:在软弱的围岩或土中,剪胀角的大小对隧道塑性区软岩位移影响很大.  相似文献   

14.
运用二维离散元程序UDEC3.1软件,对3种不同顶板岩性组合模型进行数值模拟,再现了隧道顶板岩层离层、弯曲、沉降、开裂直至塌方的全过程,分析了松散破碎围岩隧道塌方后围岩的位移、应力和塑性区分布特征。  相似文献   

15.
研究目的:随城市化进程步伐的加速,浅埋暗挖法地铁隧道修建作为发展地下交通的重要手段。为研究浅埋暗挖隧道成拱效应,本文以青岛地铁工程的修建为研究对象,通过复变函数法弹性解析解及围岩应力和位移解析解计算围岩压力反推拱顶可承载厚度;通过拱盖变形量反推隧道拱盖承受的上覆荷载,进而说明在浅埋隧道也存在"成拱效应"。本文采用理论推导和数值模拟方法对浅埋暗挖隧道成拱效应进行模拟分析,并结合某车站现场实测数据进行说明。研究结论:(1)浅埋暗挖隧道围岩自身能承担上覆地层80%多的荷载,证明硬岩地层浅埋暗挖大跨车站也存在显著的自成拱效应,在设计与施工中需重点考虑;(2)硬岩浅埋隧道在一定覆岩厚度条件下存在成拱效应,围岩承受了大部分载荷,初支承受的荷载很少,印证浅埋大跨车站成拱效应存在;(3)本文研究结果可为今后硬岩地区浅埋暗挖隧道施工提供理论参考依据,并为类似隧道工程的施工与设计提供参考。  相似文献   

16.
以采用台阶法施工的兰渝铁路黄土隧道为背景,通过三轴固结排水剪切试验分析黄土隧道围岩的工程特性,采用FLAC3D对隧道施工过程进行模拟,选取双线性应变硬化/软化遍布节理模型模拟黄土隧道围岩的工程特性,研究黄土隧道围岩的纵向位移。结果表明:隧道开挖扰动破坏了黄土隧道围岩的结构性;黄土隧道围岩的摩尔破坏包络线为双线性折线;黄土隧道围岩垂直节理遍布发育;围岩纵向位移总体上是边墙处小于拱顶处,围岩先期纵向位移约占总纵向位移的33%~41%,随着掌子面推进围岩纵向位移趋于稳定;预留核心土可有效地控制围岩纵向位移和塑性区的发展,有利于掌子面的稳定和施工安全;掌子面空间约束效应的影响范围约为-4R~4R(R为隧道开挖当量半径);由本文模型预测的围岩先期纵向位移与既有理论结果相符,但更能反映黄土隧道围岩的工程特性。  相似文献   

17.
基于强度折减法的浅埋偏压小净距隧道围岩稳定性分析   总被引:2,自引:2,他引:0  
针对广东某浅埋偏压小净距高速公路隧道,采用有限元强度折减法基本原理,研究隧道施工过程中各施工工序的安全系数动态变化过程,并对极限状态下关键施工工序的围岩塑性区与隧道围岩位移进行分析,结论为:隧道左洞第一步开挖时,由于中岩柱的出现,其安全系数最小,为最危险施工步,其次为两个洞室临时岩柱上台阶开挖;施工中中岩柱、洞室左拱腰和右拱脚出现大量塑性区,为围岩应力危险区域;中岩柱水平位移在施工过程中呈现出左右往返变化,右侧隧道竖向位移及其上部地表沉降较大,为监控量测重点部位。  相似文献   

18.
针对软弱围岩双线地铁车站隧道横通道与主线隧道开挖断面差距大,交叉区域围岩受多次扰动易出现应力集中,隧道三岔口段施工风险较大,易出现安全事故等问题,以青秀山地铁车站为依托,利用MIDAS-GTS对隧道连接处施工方法及受力特征进行模拟分析.着重对比大包法和小包法施工引起的围岩位移、应力分布及塑性区范围,并进一步对小包法施工全过程进行动态力学行为研究.研究结果表明:小包法所引起的围岩位移、重分布应力、塑性区范围均小于大包法,且施工工期相比大包法更短;小包法施工过程对围岩影响主要位于三岔口隧道交叉处,拱顶部分区域出现拉应力,拱脚处压应力集中,且施工过程中围岩应力体系转换频繁,选取合适的支护方法可有效控制围岩变形.  相似文献   

19.
青岛嘉定山地铁区间段多为微风化的花岗岩地层,地势起伏复杂。为探究本区间隧道在开挖过程中围岩的稳定性问题,采用最小安全系数法对围岩稳定性进行分析。由于地质条件复杂,岩体参数取值很难确定,基于D-P准则,采用ABAQUS建立3D弹塑性模型,根据黄金分割算法进行隧道断面拱脚位置的位移反演,确定本次计算中参数弹性模量E、泊松比μ;用修正后的岩体参数计算围岩的安全系数F_s,预判开挖围岩破坏区,为隧道围岩支护方案的设计提供依据。  相似文献   

20.
隧道围岩变形时空特性是支护结构动态设计的基础依据,针对速度350 km/h高速铁路客运专线双线隧道,采用数值模拟方法研究隧道围岩变形的空间分布特点和演化规律,提出反映围岩变形时空效应的拱顶纵向变形曲线拟合公式。在自重应力场下,隧道拱底位移值最大,施工中应尽早施作仰拱结构;道床底面以上拱顶位置位移最大,与坍塌、冒顶事故密切相关,应作为工程现场监测的重点。掌子面对前方未开挖围岩约束效应显著,围岩变形空间分布较为均匀,非圆效应对掌子面后方围岩变形影响显著,各阶段围岩变形随时间的演化规律具有明显的自相似特征。通过拟合分析提出高速铁路隧道拱顶纵向变形曲线的计算公式,基于任意3种新工况与Vlachopoulos公式进行对比分析,证明了新提出的计算公式应用效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号