首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用移动振动荷载模拟悬浮隧道中的交通荷载,并结合数值模拟分析和正交试验,分析了各计算参数对悬浮隧道跨中竖向振动位移的影响。数值计算结果表明,车辆轮载、路面不平度、行驶速度的变化对跨中竖向振动位移影响较小,但波流作用的影响较大;正交试验结果表明,各因素对跨中竖向振动位移的影响程度从大到小依次为波流作用、车辆轮载、路面不平度、行驶速度,与数值计算结果一致。  相似文献   

2.
以新建佛莞城际铁路盾构隧道与广州地铁3号线明挖段矩形隧道交叠并行工程为依托,研究地铁列车通过明挖隧道时产生的振动荷载对下部新建盾构隧道衬砌结构的动力响应,并对不同列车振动荷载下新建盾构隧道衬砌结构的动应力进行了分析.使用激振力函数法模拟地铁列车振动荷载,选取下部新建盾构隧道典型监测断面的监测点来研究在地铁列车振动荷载作用下衬砌结构的振动加速度、应力和竖向位移响应特性.结果 表明:轨道结构质量越差,列车运行速度越快,车体质量越大,列车振动荷载的幅值也相应增大;在地铁列车振动荷载作用下新建盾构隧道衬砌结构存在着明显的动力影响区;新建盾构隧道衬砌管片竖向位移曲线呈"W"形,且拱顶处的竖向位移幅值最大;随着地铁列车运行速度加快,新建盾构隧道的竖向沉降亦随之增大,地铁列车运行速度每增加30 km/h,隧道衬砌结构的竖向沉降平均增加2.66%.  相似文献   

3.
为研究基坑开挖中列车荷载的影响,通过试验测试了列车荷载引起的环境振动,并分析了列车荷载作用对开挖基坑的影响.试验结果表明:列车荷载引起的场地响应随远离铁路而逐渐减小,在一定范围内,响应峰值衰减很快;在距铁路轨道10.2 m的位置处,加速度峰值有短暂的突升;竖向加速度的衰减速度明显大于水平向加速度,在振源附近竖向加速度大于水平向,但远离轨道一定距离后,竖向加速度小于水平向加速度;轨道处的竖向位移小于水平向位移,但在远离轨道的一定范围内竖向位移峰值大于水平向位移,到靠近基坑位置水平位移再次大于竖向位移;从试验及监测结果看,短时间内列车荷载对临近基坑的影响很小,由于基坑暴露的时间较短,可以不作为主要的风险源.  相似文献   

4.
为确定移动荷载作用下曲线桥的动力学特性,以江西省某四跨连续曲线箱梁桥为实例,运用有限元软件ANSYS建立了该桥的有限元计算模型。计算了该曲线桥的自振频率以及在移动荷载作用下该曲线桥的竖向位移、扭转角、横向位移等的变化规律。同时将有限元数值计算结果与现场试验测试数据进行了对比,验证了该曲线桥有限元模型的正确性,在此基础上分析了车辆离心力、车辆载重、车速等参数对曲线桥动力响应的影响。结果表明,离心力使曲线桥产生朝向外侧的横向位移,使跨中扭转角变大;随着载重的增加,曲线桥跨中竖向、横向位移,扭转角以及支座反力呈线性增长;随着车速的增加,曲线桥跨中竖向位移先增大后减小,横向位移和扭转角逐渐增大,支座反力逐渐减小。  相似文献   

5.
为分析桥上有砟轨道结构在重载列车作用下的竖向动力响应,基于ANSYS建立有砟轨道—桥梁系统动力分析有限元模型,将列车荷载简化为集中力,分析研究中—活载及和谐号双机重载列车移动活载作用下桥梁和轨道结构的竖向位移和加速度动力响应。研究结果表明:轨道和桥梁结构跨中竖向位移和加速度响应在HXD1+HXD3+C80作用下最大,最大值为12.60 mm和3.27 mm/s~2,挠跨比为3.94×10~(-4),均小于规范中40 mm,350 mm/s~2和2.5×10~(-3)的要求;行车速度对轨道桥梁结构竖向位移响应影响很小,竖向加速度随着行车速度的增大而增大;增大桥梁刚度可以降低轨道桥梁结构系统的竖向位移和加速度响应,提高行车稳定性和乘客的舒适度;对既有铁路有砟轨道桥梁,应限定行车速度,采取相应的加固措施提高刚度以保证车—轨—桥系统的安全。  相似文献   

6.
高速铁路客运站房大型幕墙是一种桥建合一的结构体系,由于玻璃幕墙体系与列车轨道梁紧密相联,高速列车通过时可能引起玻璃幕墙共振的问题。因此,在设计幕墙结构体系时,行车振动对玻璃幕墙结构体系的影响必须予以考虑。以某高速铁路站房玻璃幕墙结构为研究对象,运用有限元方法进行数值动力仿真分析,分析结果表明:行车振动荷载不会使幕墙结构产生共振;双边列车通行相比单边列车通行,幕墙结构产生的平面外振动位移要大;当行车振动荷载激振方式为竖向力激振时,竖向激振荷载作用下幕墙结构的平面外振动位移很小。  相似文献   

7.
移动荷载作用下轨道路基动力响应分析   总被引:9,自引:0,他引:9  
基于层状梁和粘弹性半空间体理论建立轨道路基耦合动力分析模型;通过移动坐标和Fourier变换得到移动谐振点荷载作用下轨道路基稳态响应在波数域内的解;再利用快速Fourier逆变换,求出钢轨、轨枕位移及道碴路基的相互作用力在空间域内解。通过算例分析荷载速度对路基表面位移的影响,结果表明:随荷载速度增大,路基表面位移峰值也增大,在荷载速度较低范围内,其对路基位移峰值影响不大,当荷载速度接近Rayleigh波速时,路基位移峰值急剧增大;随着荷载速度的增大,路基竖向位移分布呈现出的“波动性”也越来越明显,其“波长”随荷载速度的增大而减小。  相似文献   

8.
视轨道结构为轨枕(或扣件)周期支撑的无限长周期结构,利用匀速移动谐振荷载作用下周期结构在频域内响应的性质和叠加原理,将求解匀速移动荷载作用下轨道结构振动响应问题的关键转化到在频域内解1个8元一次方程组。运用给出的解析方法对移动荷载作用下轨道结构的振动研究表明:在中低速单个移动谐振荷载作用下,钢轨位移频谱的峰值出现在荷载频率附近,且随着荷载速度的增加,频谱峰值变小,峰值位置向轨道固有频率靠近;力群的叠加使钢轨位移的频谱分布加宽;随着移动速度的增加,列车轴荷载下钢轨的位移频谱向高频移动;轨道结构有多个临界速度,提高基础的刚度,可以提高轨道的最小临界速度;基础阻尼能明显减缓轨道结构的强振动。  相似文献   

9.
公铁平层布置桥梁由于桥面板较宽,列车引起的桥面板局部振动可能影响公路车辆的响应。本文通过建立桥梁局部板壳单元有限元模型,分析列车荷载通过桥梁时的桥面板响应,讨论列车引起的局部振动在横桥向、纵桥向的分布以及对公路车道的影响。结果表明:列车轨道附近桥面板节点的竖向速度与加速度有显著提升,随着节点位置远离列车轨道,竖向响应迅速衰减;列车荷载作用下竖向响应影响范围约为列车中心线附近5 m的区域;列车通过桥梁时最靠近列车线路的公路车道响应频谱分析中并未观察到桥面板局部振动的高频部分,认为列车引起的局部振动对公路车辆的影响有限。  相似文献   

10.
为了评价宁东铁路的修建对下伏输水隧洞安全性的影响,对铁路移动荷载作用下隧洞岩基—衬砌结构予以静动力计算分析。研究结果表明,单线及多线荷载作用下岩基及衬砌结构的应力均低于相应的容许应力;移动荷载作用下岩基和隧洞衬砌质点的位移及速度振动曲线具有明显的三阶段特征,位移影响的深度范围随列车速度的增加而增加,而衰减完成的历时随着速度的增加而缩短。隧洞上方修建铁路不影响输水隧洞钢筋混凝土衬砌结构的安全,无需对隧洞进行加固处理。  相似文献   

11.
列车移动轴荷载作用下的地面振动及隔振研究   总被引:1,自引:0,他引:1  
基于动力学理论和三维有限单元分析方法,建立列车移动轴荷载作用下的三维地面振动数值分析模型。以3辆编组的列车为例,考虑列车速度的影响,分析了振动在大地中的传播特性和隔振沟的减振效果。结果表明,列车移动轴荷载引起的竖向地面振动比横向振动大,隔振沟能对竖向地面振动起到较好的减振效果。  相似文献   

12.
地铁运行列车引起建筑物低频振动的数值分析   总被引:3,自引:0,他引:3  
采用施加在轨道上的一系列移动轴荷载模拟列车作用,利用轨道结构连续弹性双层梁模型,计算出某城市地铁列车运行产生的轨枕与隧道之间的作用力。在此基础上,建立隧道-土层-建筑物有限元模型分析了不同车速下不同距离建筑物中不同楼层的振动规律。分析结果表明:移动列车轴荷载引起建筑物低频振动;车速越高,建筑物的竖向振动水平越高;随着到轨道中心线距离的增加,建筑物竖向振动水平逐渐减小;不同楼层竖向振动水平基本接近。  相似文献   

13.
研究目的:特大跨钢桥在荷载作用下有竖向位移大、自振频率较高的特点,轨道结构的选型直接影响到大桥自身的安全及列车的正常运营,本文通过对国内外钢桥轨道结构选型的介绍,结合渝黔铁路新白沙沱长江特大桥自身的特点,分析轨道结构与钢桥的适应性,确定该桥合理的轨道结构型式。研究结论:(1)有砟轨道结构通过道砟厚度的微调能较好的适应新白沙沱长江特大桥钢桁桥自身以及轨道二期恒载引起的变形大的特性;(2)有砟轨道的碎石道床与该桥车桥振动时的受力特性清晰,也能够更好的适应钢桁桥自振频率高的特性;(3)有砟轨道轨道成熟和稳定的技术更有利该桥钢桁桥的建造和维护;(4)本研究成果在大跨、重载铁路钢桁桥的轨道结构选型上具有一定的参考价值。  相似文献   

14.
轨道交通列车过岔振动特性研究   总被引:1,自引:1,他引:0  
建立了列车过岔有限元模型,利用轨道振动微分方程原理,定性研究城市轨道交通中不同轨下刚度和列车速度在道岔辙叉区对轨道振动特性的影响.分析了心轨尖端、心轨跟端及辙叉区共用垫板中心等特殊部位处的轨道振动特性.结果表明:列车速度的变化对钢轨最大竖向加速度和岔枕最大竖向加速度的影响较大;而辙叉区轨下刚度的变化对钢轨最大竖向位移、岔枕最大竖向位移及岔枕最大竖向加速度有较大的影响.  相似文献   

15.
为研究轨道交通车辆经过高架桥时的动态特性,以弹性支承块式无砟轨道为例,基于车辆-轨道耦合动力学理论,建立了车辆-轨道-桥梁耦合系统的竖向振动矩阵方程,利用MATLAB软件编写了计算程序。数值算例验证了计算程序的可靠性。通过改变系统参数,探索了轨道不平顺、车辆速度和轨道结构竖向刚度对系统竖向振动响应的影响。结果表明:轨道振动频率分布在0~500 Hz范围内,以20 Hz以内的低频振动为主;桥梁振动频率分布在0~200Hz范围内,以一阶竖向弯曲振动为主;轨道不平顺所产生的轮轨高频冲击力可达轴重的3倍,是车辆-轨道-桥梁耦合系统重要激励源之一;轮轨力和轨道加速度响应对车速的变化敏感,车辆-轨道-桥梁耦合系统位移响应对车速的变化不敏感;扣件和支承块胶垫竖向刚度应根据设计要求在40~80 k N/mm之间进行合理匹配取值。  相似文献   

16.
为适应市域铁路的大规模发展,克服传统现浇枕式无砟轨道结构的缺点,提出一种适用于市域铁路的新型装配式无砟轨道结构设计方案,并以桥梁地段为例,建立桥上无砟轨道三维精细化静力、动力分析模型,研究轨道系统的力学特性。研究表明:(1)桥上轨道结构在列车荷载作用下,最大拉应力为0.633 MPa,最大位移为0.903 mm,整体受力变形水平较低;(2)在温度荷载作用下,最大拉应力为2.105 MPa,最大垂向位移为1.039 mm,最大纵向位移为1.060 mm;(3)限位凸台倒角位置在正负温度梯度荷载下会出现一定程度应力集中现象,但整体受力水平较低,均未超过混凝土强度设计值;(4)车辆-轨道系统在160 km/h行车速度下,各项动力响应指标均在限值范围内,行车安全性和舒适性满足要求;(5)新型装配式无砟轨道稳定可靠、传力清晰、可维修性强,可为市域铁路装配式轨道结构设计、优化提供参考。  相似文献   

17.
研究目的:随着社会经济发展和人们需求的提高,铁路货运能力亟待进一步提高,在既有铁路网基础上加大铁路列车轴重是有效提高铁路运能的主要途径之一。列车轴重增大后车桥振动效应将增加,既有铁路网中的钢桥能否适应铁路轴重的提高成为列车轴重能否增加的关键问题。本文为分析重载列车作用下钢桥动力性能,选取既有线中常用跨度48 m钢桁梁桥为研究对象,通过轮对与轨道接触处的力与位移相互关系建立空间重载铁路车-桥系统耦合振动分析模型,在与实测结果对比基础上,对影响重载铁路钢桁梁桥动力性能的轨道不平顺、列车轴重和列车速度等因素进行系统分析。研究结论:(1)轨道不平顺功率谱、列车轴重和列车速度均对重载列车作用下的钢桁梁桥的动力性能有着重要影响;(2)美国六级轨道不平顺与桥上实际线路不平顺更加接近;(3)重载铁路运输中27 t轴重列车通过48 m钢桁梁桥时建议对列车运行速度进行限制。  相似文献   

18.
磁悬浮轨道梁刚度对列车走行性影响研究   总被引:3,自引:2,他引:1  
高速磁悬浮列车过桥为移动的均布荷载过桥 ,它与铁路车辆集中荷载过桥不同。磁浮列车整车模型和移动荷载模型过桥的有限元仿真分析证实在轨道梁第一阶自振频率 f接近磁浮列车速度与轨道梁跨长之比接近v/L时 ,轨道梁动力响应最大。桥梁动力响应随着轨道梁刚度增加而减小 ,当轨道梁第一阶竖向自振频率大于vmax/L时 ,轨道梁不会出现剧烈振动 ,再增加轨道梁刚度不能有效地减小振动  相似文献   

19.
研究目的:桥上无缝线路受力比较复杂,桥梁、轨道结构的受力变形成为广泛关注的问题。为研究列车荷载作用下桥上轨道结构的受力变形规律及影响因素,根据多跨简支梁桥上单元板式无砟轨道无缝线路的结构特点,基于有限元法建立多跨简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,计算列车荷载作用下桥上轨道结构的挠曲力与位移,并分析扣件纵向阻力、墩台顶固定支座纵向水平线刚度以及桥梁跨数等因素对挠曲受力与变形的影响规律。研究结论:(1)在列车荷载作用下,钢轨挠曲拉力及压力最大值分别出现在左侧桥台固定端与最后一跨跨中位置,钢轨位移呈先增后减的趋势,并在两侧路基段逐渐减小至零;(2)采用小阻力扣件可明显降低钢轨及轨道结构的受力,但同时会增加轨板相对位移,需要重点关注钢轨在桥台处的爬行;(3)采用较大纵向水平线刚度的低墩桥对列车荷载作用下桥上轨道结构纵向位移而言是不利的;(4)随着桥梁跨数的增加,轨道结构的纵向力与位移也不断增大,在6跨之前增幅明显,6跨之后增幅明显放缓并逐渐趋于平稳;(5)本研究成果对桥上CRTSⅠ型板式无砟轨道的设计及结构安全性具有参考价值。  相似文献   

20.
基于高速列车-板式轨道系统空间振动分析理论,考虑横风作用效应,建立了风-高速列车-板式轨道系统振动分析模型,推导了列车风荷载势能;将它与列车振动势能及板式轨道振动势能相加,得出系统振动总势能;根据弹性系统动力学总势能不变值原理及形成系统矩阵的"对号入座"法则,建立系统空间振动矩阵方程,并编制了相应计算程序.分析了横风作用下高速列车和板式轨道的动力响应.研究结果表明:横风对车体的横向及竖向位移、轮重减载率、倾覆系数等有很大影响,对脱轨系数、横向Sperling 指标有一定的影响,而对钢轨的横向及竖向位移影响很小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号