首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many parts of the world coastal waters with anthropogenic eutrophication have experienced a gradual depletion of dissolved silica (DSi) stocks. This could put pressure on spring bloom diatom populations, e.g. by limiting the intensity of blooms or by causing shifts in species composition. In addition, eutrophication driven enhanced diatom growth is responsible for the redistribution of DSi from the water phase to the sediments, and changes in the growth conditions may be reflected in the sediment diatom stratigraphy.To test for changes in diatom communities we have analyzed four sediment cores from the Baltic Sea covering approximately the last 100 years. The sediment cores originate from the western Gulf of Finland, the Kattegat, the Baltic Proper and the Gulf of Riga. Three out of the four cores reveal only minor changes in composition of diatom assemblages, while the Gulf of Riga core contains major changes, occurring after the second World War. This area is set apart from the other Baltic Sea basins by a high frequency of low after spring bloom DSi concentrations (< 2 µmol L− 1) during a relatively well defined time period from 1991–1998. In 1991 to 1993 a rapid decline of DSi spring concentrations and winter stocks (down to 5 µmol L− 1) in the Gulf was preceded by exceptionally intense diatom spring blooms dominated by the heavily silicified species Thalassiosira baltica (1991–1992; up to 5.5 mg ww L− 1). T. baltica has been the principal spring bloom diatom in the Gulf of Riga since records began in 1975. DSi consumption and biomass yield experiments with cultured T. baltica suggest that intense blooms can potentially exhaust the DSi stock of the water column and exceed the annual Si dissolution in the Gulf of Riga. The phytoplankton time series reveals another exceptional T. baltica bloom period in 1981–1983 (up to 8 mg L− 1), which, however, took place before the regular DSi measurements. These periods may be reflected in the conspicuous accumulation of T. baltica frustules in the sediment core corresponding to ca. 1975–1985.  相似文献   

2.
Silicon dynamics in the Oder estuary, Baltic Sea   总被引:1,自引:0,他引:1  
Studies on dissolved silicate (DSi) and biogenic silica (BSi) dynamics were carried out in the Oder estuary, Baltic Sea in 2000–2005. The Oder estuary proved to be an important component of the Oder River–Baltic Sea continuum where very intensive seasonal DSi uptake during spring and autumn, but also BSi regeneration during summer take place. Owing to the regeneration process annual DSi patterns in the river and the estuary distinctly differed; the annual patterns of DSi in the estuary showed two maxima and two minima in contrast to one maximum- and one minimum-pattern in the Oder River. DSi concentrations in the river and in the estuary were highest in winter (200–250 μmol dm− 3) and lowest (often less than 1 μmol dm− 3) in spring, concomitant with diatom growth; such low values are known to be limiting for new diatom growth. Secondary DSi summer peaks at the estuary exit exceeded 100 μmol dm− 3, and these maxima were followed by autumn minima coinciding with the autumn diatom bloom. Seasonal peaks in BSi concentrations (ca. 100 μmol dm− 3) occurred during the spring diatom bloom in the Oder River. Mass balance calculations of DSi and BSi showed that DSi + BSi import to the estuary over a two year period was 103.2 kt and that can be compared with the DSi export of 98.5 kt. The difference between these numbers gives room for ca. 2.5 kt BSi to be annually exported to the Baltic Sea. Sediment cores studies point to BSi annual accumulation on the level of 2.5 kt BSi. BSi import to the estuary is on the level of ca. 10.5 kt, thus ca. 5 kt of BSi is annually converted into the DSi, increasing the pool of DSi that leaves the system. BSi concentrations being ca. 2 times higher at the estuary entrance than at its exit remain in a good agreement with the DSi and BSi budgeting presented in the paper.  相似文献   

3.
The Baltic Sea is one of many aquatic ecosystems that show long-term declines in dissolved silicate (DSi) concentrations due to anthropogenic alteration of the biogeochemical Si cycle. Reductions in DSi in aquatic ecosystems have been coupled to hydrological regulation reducing inputs, but also with eutrophication, although the relative significance of both processes remains unknown for the observed reductions in DSi concentrations. Here we combine present and historical data on water column DSi concentrations, together with estimates of present river DSi loads to the Baltic, the load prior to damming together with estimates of the long-term accumulation of BSi in sediments. In addition, a model has been used to evaluate the past, present and future state of the biogeochemical Si cycle in the Baltic Sea. The present day DSi load to the Baltic Sea is 855 ktons y− 1. Hydrological regulation and eutrophication of inland waters can account for a reduction of 420 ktons y− 1 less riverine DSi entering the Baltic Sea today. Using published data on basin-wide accumulation rates we estimate that 1074 ktons y− 1 of biogenic silica (BSi) is accumulating in the sediments, which is 36% higher than earlier estimates from the literature (791 ktons y− 1). The difference is largely due to the high reported sedimentation rates in the Bothnian Sea and the Bothnian Bay. Using river DSi loads and estimated BSi accumulation, our model was not able to estimate water column DSi concentrations as burial estimates exceeded DSi inputs. The model was then used to estimate the BSi burial from measured DSi concentrations and DSi load. The model estimate for the total burial of BSi in all three basins was 620 ktons y− 1, 74% less than estimated from sedimentation rates and sediment BSi concentrations. The model predicted 20% less BSi accumulation in the Baltic Proper and 10% less in the Bothnian Bay than estimated, but with significantly less BSi accumulation in the Bothnian Sea by a factor of 3. The model suggests there is an overestimation of basin-wide sedimentation rates in the Bothnian Bay and the Bothnian Sea. In the Baltic Proper, modelling shows that historical DSi concentrations were 2.6 times higher at the turn of the last century (ca. 1900) than at present. Although the DSi decrease has leveled out and at present there are only restricted areas of the Baltic Sea with limiting DSi concentrations, further declines in DSi concentrations will lead to widespread DSi limitation of diatoms with severe implications for the food web.  相似文献   

4.
Hydrodynamic processes control many geochemical and ecological processes in the sea. In this paper, the influence of up- and downwelling and entrainment on the ecosystem components are studied. The ecohydrodynamic model was initially used to simulate the whole Baltic Sea to get the boundary conditions for the Gulf of Riga. Then, to study the influence of different hydrodynamic conditions on the algal bloom, three simulations were made for the Gulf of Riga using different boundary and entrainment conditions. It appears that upwelling in the gulf was strongly dependent on open boundary conditions between the Baltic Proper and the gulf. The vertical transport in the Gulf of Riga was many times more intensive in the calculation system Baltic Proper and Gulf of Riga, than in the case where only the Gulf of Riga was simulated. The blue–green algal bloom was influenced by the vertical transport due to different nutrients' limitation mechanism.  相似文献   

5.
The changes in the environmental features of the Yellow Sea during the last 25 years of the 20th century were studied using a set of seasonally monitored data along a transect (at 36°N) maintained by the State Oceanic Administration of China. The data included the ocean temperature (T), salinity (S) and biogenic elements, such as dissolved oxygen (DO), phosphorus (PO4-P), silicon (SiO3-Si) and dissolved inorganic nitrogen (DIN).The seasonal (summer and winter) values and the annual mean of these elements showed significant changes during the monitored period. Time series of T, S, DIN and N:P ratios exhibited positive trends, while those of DO, P and Si exhibited negative trends. During this period, the annual mean of T and DIN in the Yellow Sea increased by 1.7 °C and 2.95 μmol L−1, respectively, while those of DO, P and Si decreased by 59.1, 0.1 and 3.93 μmol L−1, respectively. In the 1980s, particularly in between 1985 and 1989, concentrations of P and Si dropped to near the ecological threshold for growth of diatoms. The N:P ratio increased from 4 in 1984 to over 16 in 2000. The climate trend coefficients, Rxt, for these time series are all above 0.43 with significance levels of 95%, except for salinity. The increases in T were consistent with the recent climate warming in northern China and the adjacent seas, i.e. the Bohai Sea and the East China Sea. The reduction of DO was probably attributable to the increase in T and decrease in primary production in these regions. The positive trend of DIN was mainly attributable to precipitation and partly to Changjiang River discharge. The negative concentration trends of P and Si were due to the decreases in their concentrations in seawater that flowed to the Yellow Sea from the Bohai Sea. As a result, N:P ratios greatly increased in the seawater of the Yellow Sea.Moreover, some important responses of the Yellow Sea ecosystems to the changes in physical variables and chemical biogenic elements were obviously displayed. These responses include strengthening nutrient limitation, decreasing chlorophyll a, primary production and phytoplankton abundance, succession of dominant phytoplankton species from diatoms to non-diatoms, changes in fish community structure and species diversity.  相似文献   

6.
Concentrations of dissolved Cd, Cd(diss), were measured weekly from June 1991 to June 1994 at a coastal station in the western Baltic Sea. The mean concentration of 204 pmol/dm3 is about 50% higher than in open Baltic Sea surface waters. A distinct seasonal cycle was observed with elevated concentrations in winter and spring (272 pmol/dm3) and lower values in summer and autumn (131 pmol/dm3). Relating the seasonal changes in Cd(diss) to the nutrient cycle revealed ΔCd(diss)/ΔNO3 and ΔCd(diss)/ΔPO4 ratios which are consistent with other measurements and seem to confirm the concept of a nutrient-like biogeochemistry of Cd. However, a time shift of two to three months exists between the depletion of nutrients in spring and the depletion of Cd(diss). Possibly, this indicates a decoupling of Cd(diss) from nutrients during the spring plankton bloom. However, no final conclusions can be drawn yet.Cd(diss) concentrations decreased significantly during the three year measurement period, whereas nitrate concentrations increased. A possible linkage between eutrophication and the Cd budget of the Baltic Sea is discussed.  相似文献   

7.
We tested the hypothesis that dissolved silicate (DSi) yields [kg km− 2 yr− 1] of 82 major watersheds of the Baltic Sea can be expressed as a function of the hydraulic load (HL) as a measure of water residence time and the total organic carbon (TOC) concentration, both variables potentially increasing the DSi yield. Most boreal rivers fitted a linear regression model using HL as an independent variable to explain the DSi yield. Rivers with high HL, i.e., shortest residence times, showed highest DSi yields up to 2300 kg km− 2 yr− 1. This is most likely caused by an excess supply of DSi, i.e., the geochemical sources prevail over biological sinks in these boreal watersheds. The DSi yield for regulated and unregulated larger rivers of the boreal watersheds constituting about 40% of the total water discharge and of the total DSi load to the Baltic Sea, respectively, can be expressed as: DSi yield = 190 + 49.5 HL[m yr− 1] + 0.346 TOC [µM] (R2 = 0.80). Since both HL and TOC concentrations have decreased after damming, the DSi yields have decreased significantly in the regulated boreal watersheds, for the River Luleälven we estimated more than 30%. The larger eutrophic watersheds draining cultivated landscape of the southern catchment of the Baltic Sea and representing about 50% of the annual water discharge to the Baltic Sea, deviated from this pattern and showed lower DSi yields between 60–580 kg km− 2 yr− 1. DSi yields showed saturation curve like relationship to HL and it appears that DSi is retained in the watersheds efficiently through biogenic silica (BSi) production and subsequent sedimentation along the entire river network. The relationship between HL and DSi yields for all larger cultivated watersheds was best fitted by a Freundlich isotherm (DSi = 115.7HL109; R2 = 0.73), because once lake and reservoir area exceeds 10% of the watershed area, minimum DSi yields were reached. To estimate an uperturbed DSi yield for the larger eutrophic southeastern watersheds is still difficult, since no unperturbed watersheds for comparison were available. However, a rough estimate indicate that the DSi flux from the cultivated watersheds to the Baltic Sea is nowadays only half the uperturbed flux. Overall, the riverine DSi loads to the Baltic Sea might have dropped with 30–40% during the last century.  相似文献   

8.
The Oder River estuary is a large and complex system composed of lagoons, lakes and river branches in which numerous biogeochemical processes lead to modification of loads of dissolved/suspended material brought in with the riverine waters. Budget calculations show that on an annual basis, 71–88% of total nitrogen, 73–89% of total phosphorus and 72–101% of BOD5 inflowing to the estuary are exported to the Baltic Sea. Among the inorganic nutrient species, nitrates exhibit the highest net transformation rate into organically bound forms (over 60%). The transformation could have been equally high or even higher in the case of ammonia and phosphates but these processes may have been compensated by intensive mineralization. The mechanisms responsible for the nutrient transformation patterns, as well as their net effect on the annual loads delivered into the Baltic Sea, are discussed in the paper. Phosphorus seemed to play a limiting role in phytoplankton production in the estuary in spring, while nitrogen did the same in summer.  相似文献   

9.
The trophic state of the Baltic Sea a century ago: a model simulation study   总被引:4,自引:0,他引:4  
We apply a 3-D circulation model with a biogeochemical module (ERGOM) for the simulation of trophic conditions in the Baltic Sea a century ago. One aim is to provide reference or background data for nitrogen, phosphorus and chlorophyll, which is required for the implementation of the European Water Framework Directive (WFD). We assume that the situation a century ago serves this purpose well. Model input for this long-term simulation study are the regionally differentiated riverine and atmospheric nutrient loads to the Baltic Sea, which were compiled and calculated for a situation 100 years ago on the basis of various literature sources. For the mixed surface layer of the open Baltic Sea, we suggest maximum winter concentrations for dissolved phosphorus (dissolved inorganic nitrogen) of 0.23–0.35 (2.7–3.7) mmol/m3. Maximum chlorophyll-a concentrations are between 1.8 and 2.4 mg/m3. The concentrations of all parameters for different coastal waters vary in a wide range, depending on exposure to nutrient sources. Our nutrient concentrations for the situation a century ago are close to early measured data (1950–1960) and suggest that this data is suitable as reference data, as well.  相似文献   

10.
Oxygen and phosphorus dynamics and cyanobacterial blooms in the Baltic Sea are discussed using results from the Swedish Coastal and Ocean Biogeochemical model (SCOBI) coupled to the Rossby Centre Ocean model (RCO). The high-resolution circulation model is used to simulate the time period from 1902 to 1998 using reconstructed physical forcing and climatological nutrient loads of the late 20th century. The analysis of the results covers the last 30 years of the simulation period. The results emphasize the importance of internal phosphorus and oxygen dynamics, the variability of physical conditions and the natural long-term variability of phosphorus supplies from land on the phosphorus content in the Baltic Sea. These mechanisms play an important role on the variability of available surface layer phosphorus in late winter in the Baltic Sea. The content of cyanobacteria increases with the availability of phosphorus in the surface layers of the Baltic proper and the probability for large cyanobacteria blooms in the model is rapidly increased at higher concentrations of excess dissolved inorganic phosphorus in late winter. The natural increase of phosphorus supplies from land due to increased river runoff since the early 1970s may to a large degree explain the increased phosphorus content in the Baltic proper. Another significant fraction of the increase is explained by the release of phosphorus from increased anoxic areas during the period. These results refer to the long-term variability of the phosphorus cycle. In accordance to earlier publications is the short-term (i.e. interannual) variability of the phosphorus content in the Baltic proper mainly explained by oxygen dependent sediment fluxes.  相似文献   

11.
The total gaseous mercury (TGM) in air over the coastal station at Hel and over the southern Baltic Sea was measured during the summer and winter conditions. Recorded 30-min resolution TGM data showed both higher concentrations and variability during the summer compared to the winter conditions. The summer TGM data ranged from 1.1 to 7.5 ng m−3, while the winter data ranged from 0.8 to 4.4 ng m−3. The TGM content in air over the southern Baltic Sea indicated that, in general, during the summer conditions, the sea-to-air transport of gaseous mercury dominated, while during the winter season, a tendency of gaseous mercury to sink into the water has been found. The evidences of enhanced water-to-air transfer of mercury vapour were noted, in particular, over the shallow waters of the Gulf of Gda sk under the strong water-to-air temperature gradients. Obtained results indicate that under such conditions, the coastal waters could act as a significant source of mercury vapour that may contribute to the overall budget of atmospheric mercury over the Baltic proper.  相似文献   

12.
The deterministic Riverstrahler model of river functioning is applied for the first time to sub-arctic catchments. Seasonal nutrient (N, P, Si) deliveries to the coastal zone are simulated, and nutrient annual fluxes are established for the nearly pristine river Kalix (hereafter called Kalixälven) and the heavily dammed river Lule, (hereafter called Luleälven) both located in Northern Sweden and draining into the Bothnian Bay, Baltic Sea.For Kalixälven simulations are performed with a runoff calculated from precipitation, evapo-transpiration and temperature data for the period 1990–1999, using a hydrological model calibrated on observed monthly discharges at the river outlet. The same hydrological parameters are used to calculate specific runoff for the Luleälven basin in absence of dam regulation. Reservoir filling and emptying are simulated using a simplified representation of their management rules. Diffuse sources of nutrient are evaluated according to land cover of the catchment. The simulated seasonal trends are within the range of the observed data, in particular for discharge, dissolved silica, total phosphorus, inorganic nitrogen and total organic carbon. Specific runoff is 50% higher in the Luleälven than in the Kalixälven watershed due to higher altitudes and precipitations. Average silica, nitrate and phosphorus concentrations are much lower in Luleälven than in Kalixälven. Comparison of model results for the Luleälven with and without dams shows a reduction of respectively 25% and 30% in silica and phosphorus fluxes delivered at the outlet, while nitrogen delivery is increased by 10% in the dammed vs. undammed river system. The model allows assessing the respective role of reservoir trapping of nutrient in the reservoir through algal uptake and sedimentation, and of changes in the vegetation induced by flooding the valley formerly covered by forests and wetlands.  相似文献   

13.
A box model has been implemented to understand the large-scale biogeochemical cycles of nitrogen, phosphorus, and silicon in the Gulf of Riga. The large data sets collected within the international Gulf of Riga Project in 1993/1995 were used to validate the model. The comparison to data was useful in scaling up to the gulf-wide level and scrutinizing the conclusions based on short-term field surveys and experimental studies. The simulations indicate that the limiting role was passing from silicon to phosphorus to nitrogen over the seasons of organic production. However, on an annual scale, nutrient limitation was close to the “Redfield equilibrium”. Mass balance considerations, based on modeled coupled fluxes, disagree with the conclusions on low sediment denitrification and high phosphorus retention in the pelagic system, which were derived from isolated measurements.Nutrient budgets constructed with the model revealed the high buffer capacity of the Gulf of Riga. The nutrient residence times span a range from 6 years for N to 70 years for Si. The buffering arises from intensive internal recycling in the water body and by the bottom sediments. The budgets indicate that the Gulf retains about two-thirds of external nitrogen and silicon inputs, while phosphorus retention is only 10%.A slow response to external perturbations is demonstrated with numerical experiments run for 15 years under 50% reductions of terrestrial nutrient inputs. These experiments imply that the most effective is the N+P reduction scenario, which resulted in a 20% decrease of primary production after 12 years. A reduction of P resulted in only a 6% decrease of primary production; however, it yielded an 80% drop in the amount of nitrogen fixation.  相似文献   

14.
We studied the nutrient input to the Gulf of Finland via River Neva, the largest river discharging freshwater to the Baltic Sea, and characterised the isotopic signatures (15N, 18O, 13C) in dissolved and particulate substances (NO3, PON, POC, DIC) in the River Neva over two seasonal cycles, as well as in samples from St. Petersburg wastewater treatment plants (NO3, NH4+, PON, POC). These riverine and municipal discharges account for 40% of terrestrial inorganic N loading to the Gulf of Finland, representing annually 7% of the total nitrogen pool in the water mass of the whole Gulf. To describe and evaluate the modification of these isotopic signals along a Gulf of Finland transect towards the Baltic Proper, two cruises were arranged, one in late spring after the annual maximum in River Neva runoff, and one in autumn, in the late phase of the annual growth season.River Neva nitrate signatures of 15N and 18O indicated major agricultural fertilizer origin of nitrogen, and the isotopic composition was clearly lighter (δ15N-NO3 mean of 2.4‰ air) than previously measured from more southern rivers discharging into the Baltic Sea. Because of the light composition of the River Neva N source, close to the 15N signatures of the open Gulf, as well as of the efficient depletion of the inorganic load already in the innermost estuary, straightforward end-member tracer analysis of the transport of N in the basin is problematic. St. Petersburg wastewater ammonium showed, however, high δ15N values (ca. 13‰), which gives a first estimate of 5.8‰ for δ15N of the easternmost estuarine total inorganic N source. The available sediment data from the basin (δ15N 6 to 8‰) somewhat exceeds the average source signature. This emphasizes the significance of biological transformation processes, most importantly assimilation of inorganic nitrogen, food web interactions and denitrification, which all involve isotopic fractionation, for the mass balance models describing the dynamics of the sources and sinks of the N cycle of the basin.  相似文献   

15.
Continuous measurements of the surface water CO2 partial pressure (pCO2) and the chlorophyll a fluorescence were performed in the Baltic Sea using a fully automated measurement system deployed on a cargo ship. The ship commuted regularly at two day intervals between the Mecklenburg Bight (Luebeck) and the Gulf of Finland (Helsinki). The pCO2 data collected during June 2003 and September 2004 were used to identify biological production events such as the spring bloom and the midsummer cyanobacteria bloom in five different sub-regions. To quantify the net biomass production, the decrease of the total CO2, NCT (normalized to a uniform alkalinity), during the production periods was calculated using the pCO2, temperature and salinity records and the mean alkalinity. Taking into account the CO2 air/sea exchange and the formation of dissolved organic carbon, a simple mass balance yielded the net production of particulate organic carbon which represents the total biomass. The chlorophyll a concentrations obtained from the fluorescence data showed peaks that in most cases coincided with the production maxima and thus supported the interpretation of the pCO2 data. The production during both the spring bloom (2004) and the midsummer nitrogen fixation period (2003) increased by a factor of about three from the southwest to the northeast. For the spring bloom our estimates were significantly higher than those based on the winter nutrient supply and Redfield C / N and C / P ratios. This indicated the existence of additional nutrient sources such as dissolved organic nitrogen, early nitrogen fixation and preferential P mineralization. Midsummer NCT minima were observed only in 2003 and used to quantify the nitrogen fixation activity and to characterize its interannual variability.  相似文献   

16.
Despite a tendency for the complexity of physical–biological models to increase, simple coupled models remain useful for some applications and can provide insights into crucial links between physical and biological processes. This argument is illustrated with an account of a simple 3-box model intended to help assess the capacity of fjords to assimilate nutrients from fish farms. The model, a dynamic version of the UK “Comprehensive Studies Task Team” (CSTT) steady-state model for eutrophication, was applied to Loch Creran (Scottish Western Highlands) and was implemented using Stella 8 and tested using historical data from 1975 (before the installation of a salmon farm) and field data collected in 2003, during the period of operation of the farm. The model's biological state variables are chlorophyll, dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP), and it includes a simple run-off model to convert rainfall into river discharge. The physical processes involved in exchange between the loch and the adjacent waters of the Firth of Lorne were parameterised as a constant daily exchange rate.Between 1975 and 2003, local inputs of nutrient increased but, despite this, there was little apparent increase in nutrient concentrations in the loch, and observed chlorophyll concentrations decreased substantially. Model simulations of chlorophyll and DIN agreed well with observations in 1975, as did DIN simulations in 2003. However, simulated chlorophyll was overestimated in 2003.Some of the agreement between observations and simulations come from the use of observed boundary conditions to force the model. However, even when boundary conditions are subtracted from simulations and observations, the simulations in most cases retain a significant correlation with observations, demonstrating that the model's ‘interior’ processes do add to its ability to replicate conditions in the loch.  相似文献   

17.
We develop a layered “box model” to evaluate the major effects of estuarine eutrophication of the Szczecin lagoon which can be compared with integrating measures (chlorophyll a (Chl a), sediment burial, sediment oxygen consumption (SOC), input and output of total nutrient loads) and use it to hindcast the period 1950–1996 (the years when major increase in nutrient discharges by the Oder River took place). The following state variables are used to describe the cycling of the limiting nutrients (nitrogen and phosphorus): phytoplankton (Phy), labile and refractory detritus (DN, DNref, DP, DPref), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and oxygen (O2). The three layers of the model include two water layers and one sediment layer. Decrease of the carrying capacity with respect to the increased supply of organic matter of the system with advancing eutrophication over the period studied is parameterized by an exponential decrease of the sediment nitrogen fluxes with increasing burial, simulating changing properties from moderate to high accumulating sediments. The seasonal variation as well as the order of magnitude of nutrient concentrations and phytoplankton stocks in the water column remains in agreement with recent observations. Calculated annual mean values of nutrient burial of 193 mmol N m−2 a−1 and 23 mmol P m−2 a−1 are supported by observed values from geological sediment records. Estimated DIN remineralization in the sediments between 100 and 550 mmol N m−2 a−1 corresponds to SOC measurements. Simulated DIP release up to 60 mmol P m−2 a−1 corresponds to recent measurements. The conceptual framework presented here can be used for a sequential box model approach connecting small estuaries like the Szczecin lagoon and the open sea, and might also be connected with river box models.  相似文献   

18.
The onset of spring bloom in temperate areas is a transition period where the low productive, winter phytoplankton community is transformed into a high productive spring community. Downwelling irradiance, mixing depth and the ability of the phytoplankton community to utilize the light, are key parameters determining the timing of the onset of the spring bloom. Knowing these parameters would thus provide tools for modeling the spring bloom and enhance our knowledge of ecophysiological processes during this period.Our main objective with this study was to provide data for the growth characteristics of some key species forming the spring bloom in the Gulf of Finland, and to apply those results in a simple dynamic model for the onset of the spring bloom, in order to test if the timing of the spring bloom predicted by the models corresponds to field observations. We investigated the photosynthetic characteristics of three diatoms and two dinoflagellates (Chaetoceros wighamii, Melosira arctica, Thalassiosira baltica, Scrippsiella hangoei and Woloszynskia halophila), at low temperatures (4–5 °C). All of these species are common during spring bloom in the Baltic Sea.Cultures of these species were acclimated to different irradiance regimes prior to measurements of photosynthesis, respiration, pigment concentration and light absorption. We did not find a positive relationship between respiration and growth rate, and we hypothesize that this relationship, which is well established at higher temperatures, is negligible or absent at low temperatures (< 10 °C). Photosynthetic maximum (Pm), and maximum light utilization coefficient (α) was lowest and respiration (R) highest in the dinoflagellates.We made a model of the onset of the spring bloom in the western part of Gulf of Finland, using the obtained data together with monitoring data of mixing depth and water transparency from this area. Model results were compared to field observations of chlorophyll-a (Chl-a) concentration. There was a good agreement between the model predictions and the observed onset of the spring bloom for the diatoms. S. hangoei, however, was not able to reach positive production in the model, and W. halophila had the similar growth characteristics as S. hangoei. Consequently, these species must have other competition strategies enabling them to exist and grow during spring bloom.  相似文献   

19.
The brackish Baltic Sea has been seen as particularly suitable for studies of food webs. Compared to fully marine ecosystems, it has low species diversity, which means fewer trophic linkages to analyse. The Baltic Sea is also one of the best-studied areas of the world, suggesting that most data requirements for food web models should be fulfilled. Nevertheless, the influence of physical and biological factors on trophic interactions and biogeochemical patterns varies spatially in the Baltic Sea, adding considerable complexity to food web studies. Food web structure and processes can be described and compared quantitatively between areas by estimating the flow of matter or energy through the organisms. Most such models have been based on carbon, though studies of complementary flows of other elements limiting production, such as nitrogen and phosphorus would be desirable. However, since ratios between carbon and other elements are used in calculating these flows, it is crucial, as a first step, to quantify the flows of carbon as accurately as possible.In this study, we used the EcopathII software (ver 3.1) to analyse models of carbon flow through the food webs in the three main areas of the Baltic Sea; the Baltic proper, Bothnian Sea and Bothnian Bay. A previously published study on carbon flow in the Baltic Sea [Elmgren, R. 1984. Trophic dynamics in the enclosed, brackish Baltic Sea. Rapp. P.-V. Reun. — Cons. Int. Explor. Mer. (183) 152–169.] was complemented with the data on respiration and flow to detritus [Wulff, F., Ulanowicz, R. 1989. A comparative anatomy of the Baltic Sea and Chesapeeake Bay ecosystems. In: F. Wulff, J.G. Field, K.H. Mann (Eds.), Flow Analysis of Marine Ecosystems: Theory and Practice. New York: Springer-Verlag.] in order to present complete mass balance models of carbon. The purpose of re-evaluating previous models with new analytic tools was to check how well their carbon flows balance, and to provide a basis for improved mass balance models using more recent data, including nutrients other than carbon.The resulting mass balance networks for the Baltic proper, Bothnian Sea and the Bothnian Bay were shown to deviate from steady state. There was an organic carbon surplus of 45, 25 and 18 g C m−2 year−1 in the pelagic zones of the Baltic proper, Bothnian Sea and Bothnian Bay, respectively. The Ecopath network analysis confirmed that the overall carbon flow was highest in the Baltic proper, somewhat lower in the Bothnian Sea and much lower in the Bothnian Bay. The only clear differences in food web structure between the basins was that the average trophic level was lower for demersal fish in the Bothnian Sea and higher for macrofauna in the Bothnian Bay, compared to the other basins. The analysis showed weakness in our current understanding in Baltic Sea food webs and highlighted areas where improvements could be made with more recent data.  相似文献   

20.
Seasonal variations in nutrient inputs are described for the main rivers (Loire and Vilaine) flowing into the northern Bay of Biscay. The river plumes are high in N/P ratio in late winter and spring, but not in the inner plume during the summer. Conservative behavior results in most nutrients entering the estuary and eventually reaching the coastal zone. Temporal and spatial aspects of phytoplankton growth and nutrient uptake in the northern Bay of Biscay distinguish the central area of salinity 34 from the plume area. The first diatom bloom appears offshore in late winter, at the edge of the river plumes, taking advantage of haline stratification and anticyclonic “weather windows.” In spring, when the central area of the northern shelf is phosphorus-limited, small cells predominate in the phytoplankton community and compete with bacteria for both mineral and organic phosphorus. At that period, river plumes are less extensive than in winter, but local nutrient enrichment at the river mouth allows diatom growth. In summer, phytoplankton become nitrogen-limited in the river plumes; the central area of the shelf is occupied by small forms of phytoplankton, which are located on the thermocline and use predominantly regenerated nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号