首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
质子交换膜燃料电池的结构和运行参数对其性能的影响   总被引:1,自引:0,他引:1  
讨论了电池结构参数和运行条件对质子交换膜燃料电池性能的影响.结果表明:催化层中的聚四氟乙烯(PTFE)和质子导体Nation的含量都有一最佳范围;良好的电池结构和尺寸将有利于反应气体的均匀分配、产物的排出以及电池内阻的减小.增加气体扩散层的孔径、孔隙率可增大电池的极限电流密度;降低电解质膜的厚度将会降低电池的内阻;提高运行温度和压力将改善电池内电化学反应和传质;加湿温度、反应气体的流速应适应电流密度的变化.  相似文献   

2.
质子交换膜燃料电池(PEMFC)的效率受燃料电池设计和操作条件等多种因素的影响.文中建立了能够计算PEMFC效率的单电池稳态模型,模型预测的极化曲线与实验结果吻合良好.利用该模型研究了电池工作温度和工作压力对电池效率的影响.计算结果表明,在电池工作温度范围内,提高电池工作温度,有利于提高电池效率,高电流密度电池效率增幅要大;提高阴极和阳极工作压力均有利于电池效率提高,但阴极的工作压力增加对提高电池效率作用明显.  相似文献   

3.
以新型阻醇材料Na2Ti3O7/Nafion复合膜为质子交换膜,利用热压法制备膜电极(MEA),对直接甲醇单电池进行测试.考察了电池温度、阴极加湿温度、甲醇浓度、甲醇流速和空气流速5个参数对直接甲醇燃料电池极化曲线性能的影响.实验结果表明,电池温度对电池性能的影响较为明显,提高电池温度有利于得到较好的电池性能.甲醇浓度对电池性能影响也比较明显,较低甲醇浓度有利于提高电池性能.甲醇流速和空气流速对电池性能的影响较小,阴极加湿温度对电池性能几乎没有影响.通过分析优化,该直接甲醇燃料电池的电池性能最佳工作条件是在80℃情况下,低电流密度工作区采用较低浓度甲醇溶液,高电流密度工作区采用高浓度甲醇溶液.  相似文献   

4.
以铂黑为电催化剂、Nafion117为电解质制备了膜&电极组件,分析了电极结构、电池结构和操作条件对质子交换膜燃料电池性能的影响.结果表明:催化层内的聚四氟乙烯(PTFE)和质子导体Nafion的含量都有一最佳值范围,过少不能提供足够的反应界面、气体通道和质子通道;过多则增大气体和质子传递阻力.提高温度和压力将改善电池内电化学反应和传质.良好的电池结构将有利于电池排水和减小接触电阻.  相似文献   

5.
质子交换膜燃料电池的性能   总被引:10,自引:0,他引:10  
以铂黑为电催化剂、Nafion117为电解质制备了膜&电极组件,分析了电极结构、电池结构和操作条件对质子交换膜燃料电池性能的影响.结果表明:催化层内的聚四氯乙烯(PTFE)和质子导体Nafion的含量都有一最佳值范围,过少不能提供足够的反应界面、气体通道和质子通道;过多则增大气体和质子传递阻力.提高温度和压力将改善电池内电化学反应和传质.良好的电池结构将有利于电池排水和减小接触电阻.  相似文献   

6.
质子交换膜燃料电池气体扩散层孔隙率分布对燃料电池性能有着重要的影响.本文建立了一个单电池的三维模型,分别考虑了扩散层孔隙率均匀统计分布、正态统计分布、单一统计分布三种情况,并用有限控制体法对模型进行了求解.结果表明,孔隙率单一统计分布扩散层的传质性能最好,且MEA的温度分布最均匀,因此电池性能最好.  相似文献   

7.
质子交换膜燃料电池水淹和膜干故障诊断研究综述   总被引:1,自引:0,他引:1  
质子交换膜燃料电池水淹和膜干是其在运行过程中最常见的故障. 首先,阐述了质子交换膜燃料电池中水的产生和传输机理,概括了水淹和膜干故障的影响因素,列举并分析了基于电压、压力降和阻抗的水淹和膜干诊断指标及各自的优缺点,并从内部结构和电荷传输方面介绍了水淹和膜干对质子交换膜燃料电池的危害;其次,讨论了水淹和膜干故障基于模型、基于实验和基于数据驱动的3种诊断方法及其适用范围,另外分析了缓解水淹和膜干故障的常用措施;最后,对水淹和膜干故障进行了总结和展望,并指出基于数据驱动的在线诊断方法、适于故障诊断的模型建立、大尺度电堆及多堆间水淹和膜干故障的诊断及高效精准的故障诊断指标的探索有待深入研究.   相似文献   

8.
质子交换膜燃料电池电极制备及评价   总被引:5,自引:0,他引:5  
质子交换膜燃料电池采用固体聚合物膜为电角质简化了电池的水和电解质管理;薄的电解质膜使其可以获得非常高的比能量密度;高度可靠性和环境友好使其在用于航天、陆地和水下设备电源等方面具有广泛的应用前景。研究了质子交换膜燃料电池的电催化剂和电极制备并同国外的电极进行了比较。结果表明:自制电极电池的性能接近国外同类产品。  相似文献   

9.
项目摘要:质子交换膜燃料电池很多情况下应用于变负载工况.尤其有液态水存在时,气体传质速度与与电子传递速度不一致,导致电池结构和性能受损、寿命降低。本课题基于质子交换膜燃料电池在物理尺度上的划分(膜或扩散层、电极、单电池),采用多尺度建模方法研究两相水传递情况下的动态响应特性.采用格子玻尔兹曼方法探讨负载变化时水相变机制,  相似文献   

10.
为研究流道脊宽对梯形截面流道质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)性能的影响,通过流体动力学软件Fluent搭建PEMFC三维模型,分析单通道燃料电池宽度为2 mm,流道脊宽分别为0.6、0.8、1.4、1.6 mm时质子交换膜温度、阴极气体扩散层和催化层...  相似文献   

11.
梳理了当今世界上现有氢燃料动力船舶类型,总结了氢燃料动力船舶的特点,分析了氢燃料电池动力船舶关键技术的研究现状,包括:标准规范、动力源、氢制取、氢储存与氢安全;结合船舶的航行环境、结构与运行工况等,提出了氢燃料电池动力船舶各关键技术所面临的挑战,以及应对挑战的措施建议。研究结果表明:目前,全球氢燃料动力船舶数量有限,多为内河湖泊小型客船,以氢燃料电池为主要动力来源,主要采用35 MPa高压气瓶存储氢燃料;氢燃料电池动力船舶的相关标准规范仍处于制定阶段,可参照氢燃料电池汽车建造、测试和使用方面的标准规范要求;氢燃料电池主要以质子交换膜燃料电池(PEMFC)应用最为广泛,催化剂、双极板、膜电极以及密封材料等均对PEMFC性能具有重要影响;为提高燃料电池对船舶的适用性,建议发展大功率燃料电池模块,并开展燃料电池在湿热、盐雾、倾斜、摇摆状态下的环境适应性研究;中国的制氢产业目前仍以煤炭制氢为主,应大力发展可再生能源制氢。短期内,高压气态储氢是最可行的船上储氢方式,应研究轻质、耐压、高储氢密度的新型储罐,提高储氢密度和安全性;为保证氢燃料电池动力船舶安全性,应综合运用定性和定量风险分析方法,明确风险场景,对氢泄漏、扩散、燃烧与爆炸的发展规律与后果进行仿真分析与风险评估,并提出风险缓解措施。   相似文献   

12.
为延长多堆燃料电池系统(multi-stack fuel cell system,MFCS)使用寿命,保证运行过程中各电堆总体退化性能逐渐趋于一致,针对大功率质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)系统,提出了一种考虑电堆老化的MFCS自适应功率分配方法. 在MFCS运行过程中,由于燃料电池输出功率会随不同运行条件而动态变化,导致每个电堆老化程度通常不一致,因此提出量化指标电压退化程度(voltage degradation degree,VDD)来表征燃料电池在运行过程中电堆的老化程度;还采用燃料电池半经验模型来模拟老化对电堆性能的影响;最后,通过RT-LAB搭建硬件在环(hardware-in-the-loop,HIL)测试平台,与原有的功率分配方法做比较. 结果表明:该方法能协调各燃料电池出力,减缓电堆老化速率;相较于平均功率分配方法和链式功率分配方法在MFCS的氢耗量上分别降低了13.59%和8.04%.   相似文献   

13.
针对风冷型质子交换膜燃料电池与锂电池组成的小型车用混合动力系统,提出一种根据SOC(state of charge)动态调节功率跟随系数的能量管理方法,完成混合动力观光车样车研制.对构成样车的混合动力系统、氢气储存供给系统、信号控制系统3部分进行了详细阐述,并对不同工况下功率跟随算法调节系数对控制效果的影响进行了分析;...  相似文献   

14.
为了解决传统温度控制策略在质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)电堆实际操作过程中存在的强耦合性,避免在电堆电流大幅加载时电堆内部出现短时高温,提出了一种基于电堆空气入口压力变化的改进温度控制策略.该策略以冷却水入口压力为调节目标,通过调节冷却水泵的转速控制冷却水流速,调节散热器风扇转速控制电堆冷却水入口温度.考虑电堆极板耐压的条件下,在自主搭建的多功能PEMFC测试平台上对传统控制策略与改进控制策略做了实验对比.结果表明,改进温度控制策略使冷却水入口温度最大超调量减小34.7%,冷却水出入口最大温度偏差减小17.8%,实现了较高的控制精度;电流从120 A降低到90 A时,调整时间最少缩短100 s,提高了系统的响应速度,满足燃料电池发电系统对温度控制的需求.   相似文献   

15.
为优化大功率燃料电池系统空压机控制效果,基于离心式空压机系统模型,提出了大功率质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)空气供给系统的电流跟随分段PID控制方法.该方法以离心式空压机响应特性为基础,以实际工作电流为跟随目标,在动态响应与稳态控制阶段采用不同的PID参数进行闭环控制,并进行了模拟仿真研究.最后,在实验室已有的150 kW燃料电池系统基础上的实验验证,模拟仿真与实验验证结果表明,仿真模型计算误差控制在5%以内,准确的反映了离心式空压机与空气供给系统的特性,所提出的大功率PEMFC空气供给系统的电流跟随分段PID控制方法不仅能够满足PEMFC电堆稳态控制要求,同时将动态响应时间缩短至3 s以内,控制效果良好.   相似文献   

16.
Operating temperature of proton exchange membrane fuel ceil stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.  相似文献   

17.
Modification of the commercial polymer electrolyte membrane (PEM) Nafion 117 by ??-ray irradiation to produce an improved proton exchange membrane for direct methanol fuel cells (DMFCs) was described. The Nafion 117 membrane was exposed under ??-ray irradiation circumstance with the irradiation doses from 103 to 105 Gy. Subsequently the properties of the membrane itself, in terms of swelling ratio, water uptake rate, proton conductivity and methanol permeability, together with the performance of its membrane electrode assembly (MEA) in DMFC were analyzed and contrasted with the untreated material. When the Nafion 117 membrane was exposed under ??-ray irradiation circumstance, the degradation and crosslinking reactions occurred at the same time. Specific scopes of the ??-ray irradiation dose may cause the membrane crosslinking, thus reduce the membrane swelling ratio and decrease the methanol crossover. By reducing the membrane swelling ratio and methanol permeation, the single DMFC with the modified Nafion 117 membrane produced reasonable power density performance as high as 32W/m2 under 2mol/L methanol solution at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号