首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
为进一步拓展可控性理论在城市轨道交通客流控制领域的应用,首先根据相邻车站间进出站客流和断面客流的关系,论证城市轨道交通客流网络为线性时不变系统,证明可控性理论在城市轨道交通网络上的适用性.基于严格可控性框架和滞留人数为核心的子网生成策略,得到客流控制车站的识别方法.进一步地,引入机器学习领域的相关评价指标评估该方法的效果.研究结果表明:平峰时段北京市城市轨道交通网络的可控性为0.043,意味着该时段的网络状态较为稳定,无需采取客流控制措施;高峰时段,识别方案在拥堵生成到消散的过程中,更加侧重于对线网中心车站的控制.通过识别方法得到的客流控制方案与实际客流控制方案的吻合度最高可达70%.当两种方案控制车站的数量相同时,识别方法得到的客流控制方案更加侧重于对城市西部和中心区域的站点进行控制.  相似文献   

2.
在线路客流控制中,需同时考虑各个车站控流方案的可执行性与协同性. 采用 Fisher 最优分割法确定合理客流控制时段,基于此建立以乘客总等待时间最少和旅客周转量最大为目标的线路客流协同控制线性规划模型. 基于成都地铁2 号线AFC数据进行实验,针对协同控流与非协同控流方案,以及不同客流控制时段划分方案下的协同控流方案进行对比实验. 算例中:协同控流方案在旅客周转量下降约1.0%的情况下,乘客总等待时间减少约 56.7%;基于Fisher 最优分割法确定的时段划分方案中协同控流方案在乘客总等待时间方面最优,并具有很好的可执行性.  相似文献   

3.
在线路客流控制中,需同时考虑各个车站控流方案的可执行性与协同性. 采用 Fisher 最优分割法确定合理客流控制时段,基于此建立以乘客总等待时间最少和旅客周转量最大为目标的线路客流协同控制线性规划模型. 基于成都地铁2 号线AFC数据进行实验,针对协同控流与非协同控流方案,以及不同客流控制时段划分方案下的协同控流方案进行对比实验. 算例中:协同控流方案在旅客周转量下降约1.0%的情况下,乘客总等待时间减少约 56.7%;基于Fisher 最优分割法确定的时段划分方案中协同控流方案在乘客总等待时间方面最优,并具有很好的可执行性.  相似文献   

4.
为科学客观地识别大型城市轨道交通网络瓶颈,提高网络化运营和服务管理水平,本文从轨道交通网络层出发综合考虑车站与区间能力关系,研究系统内部断面客流量和车站实际客流集散量的关系,从网络系统内部与外界客流集散关系角度,建立了基于集散网络的城市轨道交通瓶颈识别模型。以成都轨道交通网络为例进行分析,验证了该瓶颈识别方法的有效性和实用性。案例结果表明模型方法可对大型实际客流集散网络的瓶颈进行有效识别,瓶颈车站主要集中于1号线南部,最拥堵车站为火车南站(13号车站)。与既有方法相比,本文方法能从车站角度客观量化网络系统实际运营拥堵情况。  相似文献   

5.
在突发状况下为了快速、安全的疏散轨道交通车站中的客流,将车站抽象成网络图,确定网络图中节点与边的设施,以及各设施的实际疏散能力,基于最短路径优先饱和疏散的思想,设计有效疏散路径算法,并且通过不断调整更新来确定每条路径的实际疏散人数,从而得到最优疏散路径方案。最后以南京市珠江路地铁站为例验证该方案的有效性。  相似文献   

6.
城市轨道交通车站客流吸引范围重叠区域划分模型   总被引:1,自引:0,他引:1  
现有城市轨道交通车站客流吸引范围划分方法大多未考虑相邻车站间的重叠区域,导致车站客流预测值偏大。为了提高车站客流预测的准确性,考虑中间站、首末站、换乘站,针对不同相邻车站类型提出客流分配量计算公式。基于此构建轨道交通车站客流吸引范围重叠区域划分模型,并采用日本东京都城市轨道交通车站的相关数据标定模型参数。最后,以上海市轨道交通11号线安亭站及相邻的兆丰路站和汽车城站为例进行模型验证,结果显示精确度为78.6%。指出产生误差的原因可能在于上海市与东京都的差异以及交通小区数量过少。  相似文献   

7.
简要地阐述了影响轨道交通换乘的两个主要问题,并就其中换乘站内客流的组织问题做了详细研究。在分析换乘站内客流特征的基础上,考虑乘客客流的构成和分布及影响协调组织客流的因素,提出优化站内客流组织的措施。  相似文献   

8.
复杂网络化运营下的城市轨道交通客流呈现时空分布不均衡特点,为量化表征客流网络分布不均衡程度,应用广义均衡性评价工具Gini系数和Theil指数,以车站客流量和区间断面满载率为评价指标多维度评价客流网络分布状态.以上海轨道交通网络为例,基于洛伦兹曲线求解得到早高峰 8:30-8:45、平峰 10:45-11:00和晚高峰18:30-18:45这3个时段全网车站客流分布的Gini系数分别为0.527、0.554、0.540.对照评价标准可知,3个时段客流分布均极不均衡;全网区间客流分布的Gini系数分别为 0.502、0.366、0.476,表明客流区间分布早高峰极不均衡、平峰相对均衡、晚高峰比较不均衡;基于线路分组的Theil指数求解结果与上述结论一致.最后,分析各线路客流分布不均衡对全网不均衡的贡献率,结果与实际客流分布状态相符,验证了本文方法的可行性与有效性.  相似文献   

9.
城市轨道交通客流预测理论与方法的研究   总被引:3,自引:0,他引:3  
研究了采用“四阶段”法预测城市轨道交通客流量的理论模型与方法,并着重论述在混合交通状态下客流分配的平衡模型,提出了以广义出行时间最小为优化目标的分层预测思想。  相似文献   

10.
城市轨道交通客流分析   总被引:4,自引:0,他引:4  
在城市轨道交通的规划设计中,客流资料是项目的必要性论证、方案比选、确定系统规模、进行效益分析的基础.通过对我国十几座城市轨道交通系统30多条线路客流预测资料的分析,结合规划设计的技术决策过程和处理实际问题时的思路,建立了客流分析方法,提出不能仅靠"远期高峰小时单向最大断面客流量"来确定系统规模,应考察单向"最大断面客流量"是否能得到"高断面流量区间"的支撑;阐明了客运量可能的发展趋势;建立了以车站、路段为单元的客流空间分布研究方法和全日客运量时段分布研究方法;提出了应对系统、环境发生变化时的客流预测结果的调整方法.  相似文献   

11.
针对轨道交通网络中现有的站点重要度评估方法精度低的问题,提出一种基于客流量的城市轨道交通网络站点重要度评估方法,筛选出城市轨道交通网络的重要站点.采用Space L方法构建轨道交通加权网络模型,通过分析客流量比例系数和节点效率对站点的作用,设计站点重要度贡献矩阵,以纽约轨道交通网络为例,采用最大连通子图比例和网络平均效...  相似文献   

12.
轨道交通断面客流量的计算是轨道交通客流量预测的一个重要环节,断面客流量计算精确性对客流预测结果,及列车开行方案的设计有着重要的影响。目前常见断面客流量计算方法有多种,但有的不够细致、透彻;有的不够简洁,计算速度慢、效率低,难以实现编程运行。通过对断面客流量计算的方法进行深入探讨,对现有几种方法进行整理、总结,最后提出一种新的相对严谨、方便的计算方法,可为城市轨道交通客流量研究和教学工作提供参考。  相似文献   

13.
在介绍灰色系统理论的基础上,叙述运用GM(1,1)预测模型进行预测的详细步骤,讨论灰色预测模型在城市轨道交通客流量预测中的应用。并通过具体数据对未来时期的客流量进行预测,通过精度检验证明预测结果是可信的,从而证明GM(1,1)预测模型应用于城市轨道交通客流预测是完全可行的。  相似文献   

14.
城市轨道交通车站客运组织评价   总被引:2,自引:1,他引:1  
车站是城市轨道交通运输生产的基层生产单位,对外承担大量乘客售检票、乘降、换乘等客运作业。车站客运组织的效果影响着正常运营情况下乘客群体的舒适和安全,以及紧急情况下客流的迅速疏散。为全面反映车站客运组织水平,提出客运组织评价指标概念及其理论计算方法,以期为车站客运组织评价进一步计算奠定一定的理论基础,从而为改善轨道交通车站客运组织方案和优化布局提供一定指导。  相似文献   

15.
为合理确定城市轨道交通车厢立席密度,从立席乘客耐受感知的角度探讨立席密度对耐受性的影响. 从时间与空间感知的角度探讨综合耐受性影响因素分类,主要包括立席乘客密度、站立时间和候车时间3 个主要因素. 引入区间模糊数,实现对耐受感知的模糊化处理,提高参数的回归精度. 对模型进行回归分析,得出不同类型乘客耐受性的参数估计,绘制耐受阈值关于要素叠加的等值面图. 结合仿真结果,对立席密度耐受阈值进行修正,结果表明,常规条件下,普通出行乘客所能接受的最大立席密度为6.57~6.92 人/m2,通勤出行乘客所能接受的最大立席密度为7.21~7.63 人/m2. 模型结果为规划设计中确定合理立席密度提供参考依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号