首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用无线传感技术搭建基于ZigBee的智能公交网络,并在此基础上针对公交车载节点的定位问题提出一种带修正的三角形加权质心定位算法.改进的算法中利用高斯滤波器来提高RSSI测距精度,将RSSI与质心算法相结合确定出车载节点所在的定位三角形范围,以测距和的倒数作为权值系数估算出车载节点位置,并通过引入4个参考节点来进一步修正车载节点坐标以减小定位过程中单个参考节点产生的影响.经Matlab仿真实验表明,改进后的算法相较于传统算法误差更小,稳定性更高.  相似文献   

2.
节点定位是无线传感器网络中的关键技术之一.基于无线传感器网络中DV-HOP定位算法分析的基础上,提出了一种改进算法.该算法通过RSSI测距技术测量点到点的距离,并在多跳网络中对累加距离进行广播,最后在节点位置估计过程中引入了加权质心算法进行定位.实验结果表明,改进后算法复杂度低,定位精度有明显的提高.  相似文献   

3.
带时间窗的车辆路径问题是典型的NP难题,一种常用的求解方法是先对顾客分组,后进行路径优化的两阶段启发式算法. 传统算法在顾客分组时主要考虑顾客的空间位置关系,但是忽略了顾客对服务时间窗口的要求. 本文同时考虑顾客的时间和空间特性,提出了一种基于时空度量的顾客分组方法. 在路径优化阶段,本文提出了一种禁忌搜索算法来进行求解,该算法中禁忌的对象不是解,而是这些解的目标函数值的区间,以便于提高收敛效率. 作为验证,本文以Solomon标杆问题集为算例进行演算,结果表明,在窄时间窗约束下,基于时空距离的两阶段启发式算法明显优于基于空间距离的算法,且部分算例的解达到了国内外已发表的最好解.  相似文献   

4.
基于固定参数的无线信号传播损耗模型的定位算法,不能很好解决由于多径传播效应和环境复杂性所带来的测距误差问题。提出使用GRNN神经网络来拟合室内RSSI值与距离值之间的映射关系,得到RSSI值与距离值的映射模型,再将定位实验中实测的RSSI值作为训练好的GRNN神经网络的输入层,在输出层得到与RSSI值相对应的距离值,最后使用加权质心算法来进行待测节点的定位。该算法不仅简单而且性能良好,并且不需要额外的硬件。经过Matlab和ZigBee实验仿真验证,与路径损耗模型和基于BP神经网络的定位算法相比,所提出的算法可以提供较好的定位结果。  相似文献   

5.
为了提高公路隧道突发事件的判别效率,实现道路交通状态全天候监测,以智能公路上泛在无线传感网络为基础,研究了基于信号强度指示值(RSSI)的网联车辆定位问题;考虑到隧道内车辆的连续运动特性,提出了一种带有局部线性嵌入(LLE)算法的半监督极限学习机(SSELM)实现RSSI指纹定位;离线阶段利用LLE对少量已标记位置的R...  相似文献   

6.
为减少车辆调度成本,优化车辆运输路径,在时空网络中研究路段作业车辆的弧路径问题;考虑道路出行的时变性,利用车辆运行的时间、空间特征,构建时间-空间网络,建立弧路径问题的时空网络流模型;设计了拉格朗日松弛启发式算法,引入拉格朗日乘子松弛耦合约束,构建拉格朗日松弛问题;进一步通过拉格朗日分解,把松弛问题分解为单车最短路问题;用次梯度算法更新乘子,求解拉格朗日对偶问题,并更新原问题最优解的下界;使用启发式算法获得可行解,并更新原问题最优解的上界;用六结点运输网络和Sioux-Falls网络下的算例对算法进行实证分析。计算结果表明:六结点运输网络中6个算例的上下界间隙值等于0或接近0,Sioux-Falls网络中算例2的间隙值为0.02%,其余5个算例的间隙值等于0,均可以得到质量较高的近似最优解;在最复杂的算例(15辆车,70个任务)中,算法在可接受的时间内也得到了间隙值为0的解,找出了最优的车辆路径;随着迭代次数的增加,拉格朗日乘子会逐步收敛到固定值;当车辆容量从50增加到100时,最优解从52下降到42,说明在任务数和车辆数一定时,适当增加车容量可以降低运营成本。可见,与商业求解器相比,拉格朗日松弛启发式算法的间隙值更小,求解质量更高,可以更有效地求解弧路径问题。   相似文献   

7.
我国城市交通拥堵日益严重,公共交通越发重要。数据量较大时,传统的最短路径算法已无法满足计算要求。针对公交线路规划中服务人数最大问题、行程时间最短问题,通过引入智能和声搜索(HS)算法,分别结合约束条件和算例场景进行计算筛选,得出两种目标问题下的最优路径解。结果表明,和声算法收敛性良好,计算过程迅速准确。  相似文献   

8.
针对传统方法求解多目标U型拆卸线平衡问题的不足,提出了一种基于Pareto解集的多目标蚁群遗传算法.在构造初始解阶段,以协同考虑最大作业时间、最小拆卸成本差作为蚂蚁的启发式信息;通过蚁群算法搜索可行拆卸序列,并根据多目标之间的支配关系得到Pareto解集;将蚁群算法的Pareto非劣解作为遗传操作的个体,进而将遗传操作的结果正反馈于最优拆卸路径上信息素的积累,并采用拥挤距离作为蚂蚁全局信息素更新策略,可以平衡多目标对信息素的影响,使算法快速获得较优解.将所提算法应用于52项拆卸任务算例和某打印机拆卸线实例,在算例验证中,通过对比Pareto蚁群算法,所提算法求得的8个非劣解在3个评价指标上性能分别提高了50.43%、3.25%、14.10%,在实例应用中所提算法求得8种可选平衡方案,从而验证了所提算法的有效性、优越性和实用性.   相似文献   

9.
基于格序偏好的模糊多目标决策方法   总被引:4,自引:1,他引:4  
运用格论,将方案优选的全序刻画拓展为格序刻画.基于决策理论和模糊集理论,提出了模糊多目标格序决策的概念,建立了模糊多目标格序决策模型.基于正、负理想解的概念,提出了该模型的2种算法.算法1是先对模糊指标值进行加权,然后确定模糊正、负理想解,通过比较每个方案与两者之间的差异选择满意解.算法2是直接在原模糊指标值的基础上确定模糊正、负理想解,并引入满意度的概念刻画每个方案与两者之间的差异,最后通过加权得到满意解.算法1较简单,算法2则能始终保持模糊元素的线性性质.算例表明,2种算法结果一致.  相似文献   

10.
针对带硬时间窗的车辆路径问题(VRPHTW)求解,提出了一种混合单变量边 缘分布算法(hybrid UDMA,hUDMA),改进了基本UMDA的概率模型.统计节点按路径分 布的概率,使其能够在解空间上找到节点-路径的分布关系,提高了UMDA的全局搜索 能力.采用两阶段插入法进行最佳节点搜索和路径分配完成UMDA采样操作,通过种群 进化来获取最优解.计算Solomon 100 客户的6 类问题56 个算例的实验结果表明:在最优 解的取得方面,C类算例能够全部取得最优解,R、RC类算例能以50%左右概率取得最优 解;在平均误差方面,C类算例计算结果与已知最优解一致,R、RC类算例计算误差率与 已知最优解比较接近,平均误差率为1.03%.  相似文献   

11.
为提高列车定位的精确性和连续性,采用北斗卫星接收机和惯性测量单元构建车载组合定位系统. 针对多传感器组合定位信息融合估计的非线性和鲁棒性需求,将抗差估计理论的等价权原理应用于标准无迹卡尔曼滤波(unscented Kalman filter,UKF)算法,构造了一种改进的UKF算法,通过对标准UKF算法的噪声协方差进行等价替换,从而起到调节滤波增益的作用,使得滤波算法对传感器观测粗差具有较强的抑制能力. 将改进的UKF算法与标准UKF算法应用于列车组合定位进行仿真比较,结果表明:传感器无观测异常时,改进UKF算法的滤波精度总体上略优于标准UKF算法;当传感器观测值含有随机粗差时,改进UKF算法的滤波精度及稳定性明显优于标准UKF算法,北向、东向位置平均估计误差分别降低了48.5%、48.8%,北向、东向速度平均估计误差分别降低了43.7%、48.9%.   相似文献   

12.
为提高智能车辆换道轨迹规划的拟人性和实时性,提出了安全、舒适、节能等多目标协同优化的换道轨迹规划算法,该轨迹规划方法的适应性取决于车辆换道时间、纵横向速度及加速度等关键变量的约束条件;基于车辆运动学和动力学理论,分析了动态未知环境下车辆换道安全区域,建立了六次多项式车辆理想换道轨迹模型,并运用遗传算法-BP神经网络理论...  相似文献   

13.
针对智能车横纵向控制中路径跟踪精度、行驶稳定性以及乘坐舒适性等问题,提出了基于模型预测控制(MPC)的横纵向综合控制方法.速度规则系统根据参考路径曲率与车辆跟踪位移误差计算出期望速度曲线,速度跟踪控制采用分层式控制器,上层控制器利用MPC算法计算期望加速度,下层控制器利用车辆逆纵向动力学模型对车辆的驱动和制动进行协调控...  相似文献   

14.
为实现实际动态交通环境下智能汽车的变道控制, 提出了基于轨迹预瞄的智能汽车变道动态轨迹规划与跟踪控制策略; 针对实际交通环境下目标车道车速和加速度的动态变化, 提出了智能汽车变道动态轨迹规划算法, 获得了能够避免智能汽车发生碰撞的变道轨迹的动态最大纵向长度; 设计了兼顾变道效率和乘员舒适性的优化目标函数, 优化获得了在变道轨迹最大纵向长度范围内的实时动态最优变道轨迹; 利用轨迹预瞄前馈和状态反馈相结合的类人转向控制方式, 实现了智能汽车变道动态轨迹跟踪和乘员舒适性的最优控制, 并利用硬件在环试验台验证了所提控制策略的正确性。研究结果表明: 定速工况下实际与参考轨迹的侧向位移误差、航向角误差和最大侧向加速度分别为1.4%、4.8%和0.59 m·s-2; 定加速度工况下实际与参考轨迹的侧向位移误差、航向角误差和最大侧向加速度分别为1.1%、4.6%和0.48 m·s-2; 变加速度激烈工况下实际与参考轨迹的侧向位移误差和最大侧向加速度分别为1.7%和0.80 m·s-2, 航向角超调后能迅速重新跟踪动态轨迹航向角; 所提控制策略可以很好地跟踪控制实际交通环境下目标车道汽车在定车速、定加速度和变加速度工况下的智能汽车动态变道轨迹, 从而能实现智能汽车最优变道, 可确保变道过程中不与目标车道汽车发生碰撞, 并兼顾变道效率和乘员舒适性。   相似文献   

15.
为了解决船舶轨迹数据的压缩问题, 提出了一种船舶轨迹在线压缩算法; 使用多次滑动推算船位判断方法清洗船舶轨迹, 使用在线有向无环图在干净轨迹上建立压缩路径树并输出采样点; 为了提高轨迹队列和路径树在内存中的查询速度, 使用哈希表对其进行管理; 为了验证提出算法的效果, 比较了真实船舶自动识别系统数据与方向保留算法、道格拉斯-普克算法的压缩时间和误差, 采用可视化方法分析了原始轨迹、清洗轨迹和压缩轨迹。试验结果表明: 在压缩时间方面, 方向保留算法和道格拉斯-普克算法的压缩时间分别约为提出算法的1.1、1.3倍, 说明提出的算法比其他2种算法的处理时间更短; 提出的算法在压缩过程中保留了时间信息, 平均同步欧氏距离误差在任何压缩率下都能保持在10 m以下, 最大同步欧氏距离误差在压缩率为1%时仅有127 m, 而其他2种算法的平均同步欧氏距离误差和最大同步欧氏距离误差不受控制, 会随机变化; 在垂直距离误差方面, 提出的算法与道格拉斯-普克算法在压缩率不小于5%的条件下, 都能保证垂直距离误差小于20 m, 而方向保留算法的垂直距离误差会随机变化; 在显示效果方面, 提出的算法能有效清除轨迹噪声点, 压缩轨迹能够较好地代表原始轨迹的宏观交通流情况。可见, 提出的算法能更高效地保留原始轨迹的形状和时间信息。   相似文献   

16.
为明确车辆在高速公路车道保持阶段行驶过程中的轨迹横向摆动行为特征,利用高速公路无人机航拍的车辆轨迹数据集,基于车辆位置坐标提取行驶轨迹和速度,计算车辆在自然驾驶状态下的轨迹摆动特征指标,包括轨迹横向摆动的幅度和在摆动周期内的纵向行驶距离,分析不同车型的速度分布特征,研究行驶速度和车道位置对车辆轨迹横向摆动指标的影响。结果表明,尽管小型车和大型车的车身尺寸和动力性能存在显著差别,但两者的轨迹摆动幅度在整体上基本相同,两种车型的摆动幅度平均值分别为0.587 m和0.560 m,摆动周期内的行驶距离分别为252.95 m和251.99 m;车辆轨迹的横向摆动幅度对速度变化不敏感,不会随速度增加而增大,在高速条件下趋于平稳甚至下降,同样,摆动周期内的行驶距离与行驶速度之间未见显著相关性;不同的车道位置对轨迹摆动行为有一定影响,对小型车而言,车道位置由内向外变化时,轨迹摆幅有一定的增加趋势,而大型车的轨迹摆幅则是中间车道最小;国内高速公路车辆轨迹摆幅略高于德国HighD数据集的分析结果,但整体上非常接近;根据车辆轨迹的横向摆动幅度特征,可以确定高速公路小客车专用车道(或是小客车专用高速公路)的...  相似文献   

17.
为解决道路交叉口车辆由于定位信号缺失或者延迟引起的车辆定位偏差较大的问题,提出了基于车路协同的协同地图匹配算法(cooperative map-matching,CMM). 首先利用扩展Kalman滤波(extended Kalman filter,EKF)融合GPS与车载航位推算系统(vehicular dead reckoning,DR)信息作为协同地图匹配的预先定位;然后基于短程通讯技术实现车辆信息的交换与共享,在电子地图的基础上,利用道路约束实现车辆进一步定位. 为了验证算法的有效性,搭建了模拟真实场景的仿真环境进行实验. 研究结果表明:采用EKF融合GPS/DR数据的交叉口车辆定位平均偏差为9.09 m,相比GPS 的14.31 m,定位偏差减小30.87%;采用CMM算法的交叉口车辆,当参与CMM车辆数为7时,平均位置偏差为4.5 m,参与CMM车辆数为10辆时,平均位置偏差为2.75 m,相比EKF定位偏差减小69.74%.   相似文献   

18.
交叉口机动车运动轨迹特征提取与标定   总被引:2,自引:0,他引:2  
为探讨机动车在交叉口的运行特性,采用复合特征提取算法获取图像上机动车运行的轨迹特征;在多边形线性扫描算法的基础上,考虑摄像机成像畸变的影响,引入中心偏移因子,提出了考虑中心偏移的多区域扫描标定算法,将运行轨迹图像特征转化为真实的运动特征;最后,与多边形线性扫描算法的计算结果及实测数据进行了对比,结果表明:该算法能够有效地提取交叉口机动车的运行轨迹,准确地表征机动车在交叉口的相关运行特性;与实测车速相比,计算得到的机动车速度误差小于4%.   相似文献   

19.
为了研究复杂环境下快速移动车辆目标检测与跟踪问题,提出了基于知识库的智能Agent自适应图像分割与滤波算法,建立了帧间差异积累动态矩阵自适应背景模型,在跟踪过程中,设计了改进的SSD算法预测初始迭代点,根据Jensen不等式推导了具有自适应核窗宽迭代更新的M eanSh ift算法,实现了对视频车辆目标的自适应智能跟踪.实验结果表明,该算法能有效、准确地跟踪视频中的运动目标,自适应能力强;与其他算法比较,跟踪误差降低了54.4%,平均跟踪时间延长了41.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号