首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 828 毫秒
1.
针对道路裂缝检测识别需人工参与、传统算法识别不准确等问题,提出一种基于YOLO v3深度学习算法的道路裂缝识别方法。首先将数据集图片缩放成416×416,然后利用Labelme对数据进行裂缝标注并对边界框位置信息进行转换,最后利用YOLO v3算法框架进行模型训练。结果表明:YOLO v3算法的精确率、召回率、F1分数都大于95%,图片检测速度达到0.123 1 s/张。YOLO v3深度学习算法在精度和速度上都满足了道路裂缝实时检测的要求。  相似文献   

2.
为提高深度学习神经网络运行速度,满足智能驾驶对算法实时性的要求,基于一种一体化实时目标检测算法YOLO和一种目标检测网络模型Faster RCNN,提出一种结合两者特点的实时目标检测神经网络。该网络保留区域卷积神经网络(R-CNN)算法的二次检测模式和区域生成神经网络RPN,去掉先验框,采用YOLO直接预测位置。结合Mask R-CNN中的ROI-Align方法进行二次位置修正,减少了Faster R-CNN中ROI-pooling所带来的位置预测偏差。对改进后的网络在KITTI数据集上进行测试,结果表明:改进后的神经网络检测一次仅耗时38 ms,检测的平均精确度高于YOLO和Faster RCNN,且对于不同大小的目标都具有很好的泛化能力。  相似文献   

3.
传统的DBSCAN聚类算法是基于密度的聚类算法,原始算法在搜索精度和搜索效率上存在一定的局限性。基于LUX4线激光雷达数据点的点云特点,结合DBSCAN算法存在的不足与路面目标物的实际情况,提出了1种基于改进的DBSCAN聚类算法,选取4个代表点取代对所有点的搜索和改进搜索半径使其随扫描的距离而变化的方法,实现激光雷达目标物的快速、准确检测。通过改进DBSCAN算法对雷达数据进行去噪声和聚类处理,根据检测物在激光雷达探测中的形状特征模型进行形状匹配。实验结果表明该改进算法能较好的识别出目标物,行人检测率由原始算法的61.90%提高到了80.95%,搜索时间较原始算法缩短了44.7%,解决了原始算法精度低、搜索慢的缺点。  相似文献   

4.
为了研究现有车辆目标检测算法的检测精度与检测速度相矛盾的问题,提出了一种小型化的改进YOLOv3深度卷积网络的实时车辆检测及跟踪算法。采用构建卷积层数少的网络架构以及进行多目标跟踪的方法,分析了大网络模型结构时正向推理速度慢、小网络模型结构时检测精度低的原因。在不同尺度卷积特征多层次提取车辆特征信息来保证准确率的基础上,利用K-means++算法改进聚类先验框中心点的提取,同时借鉴darknet19骨干网络结构,构建一种网络深度更小的基础卷积网络结构,采用更少的重复残差块结构单元,使网络模型结构小型化。在采用卡尔曼滤波算法对目标检测后下一时刻的车辆位置进行跟踪的基础上,利用匈牙利匹配算法进行分配关联视频相邻帧中的车辆,确定被检测目标唯一标签ID,实现对多个目标的精确定位与跟踪,以此改善检测不连续、漏检、目标被遮挡等检测不稳定的情况。结果表明:在实车自采集数据和公开数据集KITTI上进行测试,相较于YOLOv3网络,在平均准确率基本保持不变情况下,网络参数减小,网络模型大小缩小为1/4,为57.2 MB,检测速度提高一倍,达到101.7 f/s。整体算法检测速度达到11.3 ms/帧,检测率为97.50%。该小型化网络检测跟踪算法在复杂道路环境中有较强的鲁棒性,可以满足实际智能驾驶过程中对车辆检测跟踪的精度、速度的要求。  相似文献   

5.
在自动驾驶汽车中,深度学习算法可以对单目视觉摄像头采集到的图像进行准确地检测和识别,对于保证驾驶安全性具有重要意义.在保证实时检测的前提下,为了提高深度学习模型的检测精度和鲁棒性,以应对多种复杂的道路场景,对单阶段检测算法YOLOv3进行改进并将其应用在跨域目标检测中.首先,在数据预处理阶段,根据各类目标物形状和尺寸的...  相似文献   

6.
基于毫米波雷达和机器视觉融合的车辆检测   总被引:1,自引:0,他引:1  
《汽车工程》2021,43(4)
针对车辆检测中使用传统单一传感器的识别效果差、易受干扰等缺点,本文提出一种基于毫米波雷达和机器视觉融合的车辆检测方法。首先利用分层聚类算法对雷达数据进行处理,过滤无效目标;利用改进的YOLO v2算法降低漏检率,提高检测速度;然后运用目标检测交并比和全局最近邻数据关联算法实现多传感器数据融合;最后基于扩展卡尔曼滤波算法进行目标跟踪,而得出最终结果。实车试验结果表明,该方法的车辆识别效果优于单一传感器,且在多种路况下识别效果良好。  相似文献   

7.
为了研究无人机监测视频准确提取运动车辆交通参数信息,采用计算机人工智能图像处理技术和实际道路场景验证试验方法,提出一种基于YOLO v3神经网络模型的目标检测和Deep-Sort多目标跟踪算法相结合的运动车辆参数提取方法。为了验证无人机交通参数提取方法的可行性、准确性、可靠性,采用试验路段场景数字化、特征点标记、世界坐标采集的方法,标定世界坐标与图像坐标转换矩阵。采用装载高精度GNSS-RTK定位和车载OBD的试验车辆实时记录车辆微观运动参数(时间、速度、加速度等),对比验证视频提取车辆参数的准确性。共进行7组不同飞行高度(150~350 m)、不同行驶速度(40~90 km/h)验证试验,累计获得70 min试验路段监测视频,2辆试验车共获得5 400帧、1 192个速度验证信息。验证试验结果表明:视频识别算法目标检测精度为90. 88%、追踪精度为98. 9%,提取的车辆速度参数整体绝对误差在±3 km/h以内、相对误差在2%以内,参数提取整体准确率达98%。验证了无人机视频交通参数提取的可靠性和准确性,为交通管控提供了一种监测方法和数据提取手段,也为交通行为研究提供了数据采集手段。  相似文献   

8.
运用YOLO(You Only Look Once)实时目标检测算法解决了驾驶视频目标检测问题。针对目标检测算法受环境条件影响鲁棒性差、小目标识别能力不高的问题,建立了涵盖多种天气环境、包含疑难目标的驾驶视频样本数据库,提出了疑难样本训练方法,训练出可在多种天气环境中良好识别小型汽车、行人、公交车及货车的YOLO检测模型。实验结果表明,该训练方法可有效提升目标检测性能;所得检测模型具有较高的召回率和精确度,可初步应用于实时驾驶视频的目标检测。  相似文献   

9.
针对现有的深度学习目标检测算法中存在的复杂光照场景下检测精度不高、实时性差等问题,提出了一种基于YOLO算法的抗光照目标检测网络模型YOLO-RLG。首先,将输入模型的RGB数据转换为HSV数据,从HSV数据分离出抗光照能力强的S通道,并与RGB数据合并生成RGBS数据,使输入数据具备抗光照能力;其次,将YOLOV4的主干网络替换成Ghostnet网络,并对其在普通卷积与廉价卷积的模型分配比例上进行调整,在保证检测精度的同时提高检测速度;最后,用EIoU替换CIoU改进模型的损失函数,提高了目标检测精度和算法鲁棒性。基于KITTI与VOC数据集的实验结果表明,与原网络模型比较,FPS提高了22.54与17.84 f/s,模型降低了210.3 M,精确度(AP)提升了0.83%与1.31%,且算法的抗光照能力得到显著增强。  相似文献   

10.
基于单目视觉的道路边界检测由于其在车辆辅助驾驶系统中的重要应用价值成为当前计算机视觉和智能车辆领域最为活跃的研究课题之一。指出图像边缘检测现有算法的不足,采用领域平均法对图像进行平滑处理,根据图像的边缘特征运用Prewitt算子实现边缘增强,以获取精确的边缘信息。使用最大熵算法分割二值化图像进一步减少噪声,从而得到良好的道路特征图像数据。利用道路约束条件,建立视觉系统动态感兴趣区域(DAOI),运用改进的Hough变换最终识别道路边界。试验结果表明:本文所述算法不仅能准确、实时检测出道路板边界,而且能有效地抑制噪声,为区域交通智能车辆的换道和超车提供研究基础。  相似文献   

11.
道路病害快速检测对于确保道路的安全和可靠运行至关重要。而探地雷达技术在道路病害检测中具有快速、无损和高分辨率等特征,因此被广泛应用。然而,以往的雷达图像处理和解译主要依赖人员的主观经验,易导致误判和漏判。为了解决这一问题,通过研究基于YOLO算法的图像识别方法,结合深度学习技术,开发一种智能化的道路病害识别系统,能够自动提取探地雷达图像中各类病害的特征,并实现高效、智能的识别,并通过钻孔验证,以确保识别结果的准确性,有效预防突发性道路塌陷的发生,提高道路的安全性和可靠性。  相似文献   

12.
得益于数字图像处理技术快速的发展和计算机硬件性能的提高,基于机器学习和深度学习的图像处理技术,成为智能驾驶视觉感知的重要支撑。为了在实际道路环境中持续高效的检测道路目标,文章利用了YOLO神经网络作为主要检测框架。使用卷积神经网络可以同时捕捉到目标的底层和高层特征。物体的底层特征可以符合人的视觉感知特征和主观感受,确定物体的所属种类和外观形状,将底层特征与高层语义特征结合进一步增强神经网络识别的准确度和鲁棒性。  相似文献   

13.
为了提高城市道路短时交通流预测的精度,提出了一种基于时空遗传粒子群支持向量机的短时交通流预测模型.通过主成分分析法对路网原始交通流量进行时空相关性分析,用较少的主成分代替原始交通流量并作为预测因子,在粒子群算法中引入遗传算法的交叉和变异因子,避免粒子群算法陷入局部最优.利用改进后的粒子群算法优化支持向量机参数,得到最优的支持向量机模型,并实现城市道路的短时交通流预测.以长春市路网的实测数据为基础进行了实例验证,结果表明,优化支持向量机参数时,遗传粒子群算法不会陷入局部最优,优化效果更好;与粒子群支持向量机模型和遗传粒子群支持向量机模型相比,所提出预测模型的相对误差波动较稳定,平均预测精度分别提高了4.96%和3.41%.   相似文献   

14.
文章论述了基于车载式视频图像鉴定道路交通事故中目标车辆行驶速度的基本原理,提出一种依据射影几何学中的交比不变性原理测算目标车辆行驶距离的算法。该算法可以避免因车辆运动轨迹与视频摄录设备镜头光学轴线不垂直而产生的误差,从而提高了目标车辆行驶速度鉴定的精确度。最后根据一个真实案例,探讨了用车载式视频图像进行车辆行驶速度鉴定的方法、步骤以及主要注意事项,可为评价这一鉴定方法的准确性和科学性提供参考。  相似文献   

15.
基于Logit模型的城市道路交通事件检测仿真   总被引:1,自引:0,他引:1  
以Logit模型为基础,利用效用函数与概率的概念,建立分时段的城市道路交通事件检测算法。由PARAMICS软件产生模拟交通流数据,将数据输入LIMDEP软件并标定效用函数的系数,同时还输出最大概率预测表。仿真试验结果表明:(1)基于Logit模型的检测算法不仅能够用于城市道路的事件检测,还可判断事件发生所在的车道。(2)在路段长度、车道数、流量相等的模拟条件下,交叉口信号超过仿真所设定的1 min时段长度时,检测效果降低。若将模型时段长度由1 min提高至超过最大信号周期,即可解决检测效果降低的问题。  相似文献   

16.
实时检测内河船舶流量对水上交通管理具有重要意义.为实时检测船舶流量,研究了一种基于虚拟线圈的船舶流量检测系统.虚拟线圈即在视频图像上设置一个封闭区域,根据该区域内图像的变化检测是否有运动目标通过.利用RGB三通道背景差分法得到视频图像的二值化图像,二值化图像的三个分割阈值由大津法求出.设置2个平行的虚拟线圈,通过虚拟线圈的船舶会被检测并计数,同时检测船舶的船长与船宽,利用BP神经网络对船舶进行分类.通过在武汉长江大桥和武汉长江二桥上不同时间段采集的视频进行实验,结果表明,船舶计数正确率达到97.1%,计数漏检率2.9%,计数错检率0%,船舶分类正确率98.6%.处理一帧图片的平均时间为7 ms,具有较好的实时性.   相似文献   

17.
针对在复杂场景下,背景区域干扰特征过多、被检测目标运动速度快等导致的动态目标检测率低的问题,研究了基于深度学习的多角度车辆动态检测方法,将带有微型神经网络的卷积神经网络(MLP-CNN)用于传统算法的改进.使用快速候选区域提取算法提取图像中可能存在车辆的区域,之后使用深层卷积神经网络(CNN)提取候选区域的特征,并在卷积层中增加微型神经网络(MLP)对每层的特征进一步综合抽象,最后使用支持向量机(SVM)区分目标和背景的CNN特征.实验表明,该方法能够处理高复杂度背景条件下,部分遮挡、运动速度快的目标特征检测,识别率高达87.9%,耗时仅需225ms,比常用方法效率有大幅度提升.   相似文献   

18.
为了提高交通目标检测的实时性和准确性,针对交通目标检测过程中普遍存在的背景复杂、光线变化、物体遮挡等干扰问题,以及基于深度学习的目标检测算法在进行区域选择时滑动窗口遍历搜索耗时的问题,提出一种基于时空兴趣点(STIP)的交通多目标感兴趣区域快速检测算法。像素级时空兴趣点检测在处理目标遮挡时具有较好的鲁棒性,利用这一特点,首先在传统兴趣点检测算法的基础上加入背景点抑制和时空点约束,以减少无效兴趣点对有效兴趣点检测带来的干扰。通过改进均值漂移算法,使得聚类中心数量随目标数目的变化而改变。然后对被检测出的多目标附近的候选兴趣点分别进行聚类,获取各个目标聚类中心位置信息。根据聚类中心点与筛选后的目标兴趣点之间的相对位置关系进行特定组合获得感兴趣区域。在这些感兴趣区域上使用选择性搜索算法生成1 000~2 000个候选区域,并将这些候选区域放入训练好的深度卷积神经网络模型中进行特征提取。最后将特征提取结果送入支持向量机中进行目标种类判别并使用回归器精细修正目标识别框的位置。研究结果表明:通过对候选区域进行预处理,送入模型中的候选区域数量减少了82%,对应算法整体运行时间减少了74%,能够满足智能交通监控的实际需求。  相似文献   

19.
利用出租车浮动车数据对城市道路行程车速的表达能力,针对出租车空车和重车2种数据运用小波变换技术分析了城市道路交通状态突变点,据此进行了城市道路交通事件的检测。区别于以往小波变换技术,首先运用于数据降噪,再将处理数据运用交通事件检测算法判断,直接采用小波变换技术实现了对城市道路间断流的交通事件的检测。并利用实际采集数据对提出的交通事件检测算法进行了验证,结果表明算法能够对交通事件进行更综合的检测,检测准确度得到了提高,能够为城市交通信息发布和交通诱导提供更加可靠的信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号