首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 484 毫秒
1.
以云罗(云浮—罗定)高速公路为背景,对锚索桩板墙支挡高路堤进行现场试验,通过对锚索桩板墙的设计、传感器的埋设和测试及工况划分,在不同工况下对土压力分布、桩身位移进行测试,分析了锚索拉力和桩身位移随填土高度和时间的变化规律。结果表明,填土工况下,土压力、锚索拉力和桩的位移随着填土高度的增大而增大;锚索张拉工况下,随着锚索位置的提高,土压力逐渐向上移动,桩的位移整体向山侧移动,位移值上大下小,最大值在桩顶;工后观测工况下,随着时间的推移,土压力有变化但其分布基本不变,桩的位移向河侧移动,且位移值上大下小。  相似文献   

2.
预应力锚拉式桩板墙是桩板墙及锚拉抗滑桩基础上发展起来的一种新型支挡结构。基于结构矩阵方法。结合工程特点,考虑了锚索的弹性约束、填土土压力随位移的变化关系、锁口处位移和内力的连续条件,计入了桩锚固段变形对桩位移和内力的影响,分别导出了锚固段及受荷段的刚度矩阵,编制了相应的计算程序。计算了墙面桩的位移,弯矩、锚固段应力应变、锚索拉力等。所得结果与其它方法相比,有较好的规律性和可比性,可供相关工程参考和借鉴。  相似文献   

3.
预应力锚索抗滑桩和预应力锚索地梁常联合构成支护体系治理大型岩石滑坡.文中讨论了二锚体系中锚索拉力的确定方法,在给定的滑坡推力分配方案下,首先计算预锚桩的锚索拉力和桩头位移,然后根据滑体为刚性的假定,令地梁锚索的锚头位移与预锚桩的桩头位移一致,根据位移增量计算地梁锚索的拉力,从而确定地梁锚索的设计拉力.  相似文献   

4.
介绍特高桩板墙工程中,预应力锚拉墙的墙面桩、锚索孔(锚定桩)、锚索、填石的施工与质量控制和经验。  相似文献   

5.
因岩土体-桩-锚索相互作用的复杂性,目前关于锚拉桩挡墙的计算模型中存在诸多问题。比如,在目前预应力锚索抗滑桩的设计中,没有考虑锚索张拉阶段产生的主动加固力作用以及桩锚协调方程未能考虑张拉阶段桩锚固点向坡内产生的位移等。计算模型的不合理导致长期以来锚索拉力计算不合理。为解决这类问题,根据施工和工作的两种工况提出改进的两阶段计算模型。在此基础上,利用初参数法给出基于双参数地基反力模型的全桩解算方法,并通过实例,对改进的计算方法和现有计算方法进行了分析比较,结果表明:前者比较符合工程实际,有利于保证结构安全。  相似文献   

6.
王振  张锐  熊攀 《路基工程》2017,(2):23-27
运用FLAC3D建立了考虑锚拉桩实际施工工况及受力特点的推移式滑坡数值概化模型。通过控制滑体后缘的位移边界条件来模拟推移式滑坡变形由后向前传递的过程,进行了抗滑桩桩土相互作用全过程分析。结果表明:在巨大的锚索初始预应力作用下,桩向坡体内侧挠曲变形,同时也产生了数量可观的反向弯矩,这在锚拉桩的设计计算中是不可忽视的;锚索的初始张拉力、锚索刚度的增大都会使滑坡推力的作用点增高。  相似文献   

7.
锚索桩板墙高效的结合了岩土锚固技术与传统支挡结构的优势,能有效降低施工成本,提高施工效率,在山区高速公路高填方路基中应用广泛。锚索桩板墙锚固桩的承载力是影响整个预应力锚索桩板墙支挡效果的关键因素之一。基于桩土体系的荷载传递规律,文章介绍了公路工程锚索桩板墙锚固桩的承载能力计算模式,总结了锚固桩的锚固承载能力影响因素,结合实际工程特定地质条件下锚索桩板墙人工挖孔锚固桩的施工工艺与质量控制,提出了基于锚固桩尺寸、基于桩身强度的施工质量控制措施。研究成果对公路工程锚索桩板墙人工挖孔锚固桩施工质量的控制及承载能力的研究具有一定的借鉴。  相似文献   

8.
填料性能对预应力锚拉式桩板墙影响的数值分析   总被引:1,自引:0,他引:1  
预应力锚拉式桩板墙是一种得到广泛应用的新型支挡结构,本文通过建立耦合分析数值模型对桩板墙的受力特征进行了有限元分析。通过分析了解填料的力学参数(变形模量、摩擦角、粘聚力)对桩板墙位移、弯矩、土压力以及锚固端接触应力和自由段轴力的变化。揭示填料力学性能对预应力锚拉式桩板墙的影响,为类似工程的设计提供参考。  相似文献   

9.
陈占 《路基工程》2010,(3):111-113
根据悬臂梁挠曲变形理论、横向变形约束弹性地基梁理论及桩索变形协调原理,提出了考虑各锚索支点施工工况影响系数进行土质地层多支点预应力锚索桩的设计方法;结合工程实施,对桩背与板后土压力、锚索拉力、桩身位移等进行了现场测试和分析研究;验证了桩背土压力受锚索约束影响呈梯形分布、板后土压力为三角形分布的应力图形;证明了考虑工况影响系数进行多支点预应力锚索桩设计的合理性和可行性。  相似文献   

10.
预应力锚拉抗滑桩因其能改善桩的受力特性,控制桩顶位移,降低工程造价等诸多优点,在大型边坡治理中得到广泛应用。然而因预应力损失量大,蠕变稳定时间长等缺点,在深厚土层边坡治理工程中往往效果并不理想。鉴于此,引入一种可调索力锚固装置,通过事后补偿张拉控制锚索拉力,进而保证锚拉桩的加固效果。将该装置应用于某高速公路边坡治理设计,结果表明,后期预应力补偿张拉,可挽回25%~45%的预应力损失,桩顶位移减少50%~60%,大幅度提高了抗滑桩的治理效果。  相似文献   

11.
基于FLAC3D软件,对北京某深基坑土钉墙与桩锚组合支护结构进行数值模拟分析,并与实测值进行对比。研究结果表明:上部土钉墙支护结构,最后一排土钉最大拉力位置在中后部,不同于单一的土钉墙支护最后一排土钉的受力情况,在设计时应适当加长最后一排土钉的长度;锚索对桩顶位移的限制作用比较明显,锚索的受力值小于设计值,在设计时可以考虑适当减小锚索的长度。  相似文献   

12.
为解决高地压、高流变条件下软岩隧道围岩及支护结构大变形控制难题,通过理论和数值分析,研究让压预应力锚索在隧道大变形控制中的作用机制。研究内容包括2个方面,一是研究新型让压锚垫板在低预紧力及低围压下的力学性能,满足支护结构先柔让压的要求; 二是让压结束后,预应力锚索在高预紧力条件下改善支护结构受力性能,实现后刚强支的作用。结果表明: 1)预应力锚索通过施加预紧力,增大洞壁径向阻力,提高围岩稳定性; 2)预应力锚索在让压结束后对支护结构的主要作用是减跨,由此提高支护结构刚度和承载能力; 3)围岩、支护结构和让压预应力锚索变形协调,力学上相互耦合,构成“先柔后刚”的支护体系。  相似文献   

13.
施加预应力锚索是修复大变形抗滑桩工程常用的技术之一,而锚索预应力的计算是修复工程设计的关键。基于弹性桩基本理论定义"大变形抗滑桩"概念,界定抗滑桩修复工程中锚索预应力上、下限值对应的桩顶位移状态;以修复上、下限状态的桩顶位移为设计目标,将抗滑桩自由段假定为悬臂梁,嵌固段假定为弹性地基梁,利用桩-索位移变形协调条件,分别推导锚索预应力上、下限值表达式,并将所提计算方法应用于预应力锚索修复大变形抗滑桩模型试验。结果表明:采用所提计算方法与模型试验获得的锚索预应力上、下限值误差仅6%,施加预应力锚索改善了大变形抗滑桩桩身受力性能,修复效果较好,验证了此方法的合理性。现场工程应用表明:某特大滑坡大变形抗滑桩桩顶位移得到有效遏制,抗滑桩工程处于稳定状态,进一步印证了所提方法的正确性。  相似文献   

14.
目前设计实践中坡面锚索框架-坡脚抗滑桩边坡支护体系未考虑变形协调,支护结构存在两种防护形式先后顺序破坏的风险。通过建立坡体变形与锚索、抗滑桩变形的关系,推导了锚索+抗滑桩支护体系的变形协调公式,结合锚索和抗滑桩的变形计算方法,提出了变形协调条件下锚索-抗滑桩支护体系的设计方法。建议在下滑力无法准确确定时,应采用低刚度的锚索,并尽量设置较高的锚索预应力锁定值,保证锚索在充分发挥锚固力的同时,增强其对变形的适应能力,提高锚索框架-抗滑桩支护体系的变形协调性。  相似文献   

15.
以桂林某古滑坡治理工程为例,在治理设计中采用了预应力锚索格构梁和预应力锚索抗滑桩两种支护方案,以这两种支护方案进行有限元数值模拟,从滑坡的位移及稳定系数对模拟的结果进行了分析,并结合支护方案的施工难易程度、工程经济、对环境的影响等因素进行了综合对比分析,确定最优方案为锚索抗滑桩。可为同类工程提供借鉴。  相似文献   

16.
为了解既有列车振动荷载对锚索预应力损失、地表沉降及桩体水平位移的影响,以京石高铁石家庄六线隧道明挖深大基坑桩、锚围护结构为工程背景,根据相似关系,试验确定了土体-桩锚系统模型试验材料;针对列车振动荷载特点,开展了基坑开挖完成后连续振动162 d(相似关系)的模型试验,分析了振动频率分别为8.282,13.801,20.704 Hz时锚索预应力的损失规律、地表沉降、桩体水平位移以及锚索预应力随锚固深度变化的特点。试验结果表明:随着振动频率(列车行车速度)的增加,锚索预应力损失率、最终地表沉降值和桩体水平位移均大幅增加; 8.282 Hz频率(行车速度120 km·h-1) 下振动28 d,锚索预应力平均损失率为2%;13.801 Hz频率 (行车速度200 km·h-1) 下振动53 d,锚索预应力平均损失率为8%;20.704 Hz频率(行车速度300 km·h-1)下振动53 d,锚索预应力平均损失率高达23%;锚固段锚索应力沿锚索锚固深度呈喇叭状开口递减趋势,接近锚固段底部时,其应力几乎为0。通过动态模型试验,掌握了列车振动荷载作用下锚索预应力随时间的损失规律,对临近铁路深大基坑锚索设计与施工具有理论指导意义。  相似文献   

17.
深圳机场新航站区轨道交通枢纽工程的基坑围护结构采用咬合桩+锚索或支撑的方案,施工通过锚索抗拔力试验检测其加固效果。试验结果表明,锚索的总弹性位移和最大拉力均满足设计要求。锚索的成功应用保证了工程施工进度,为基坑的后续工程施工创造了有利条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号