首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
天然气发动机燃烧方式分析   总被引:2,自引:0,他引:2  
根据混合气形成和着火方式将天然气发动机的燃烧模式分成均质混合气点燃、非均质混合气点燃、均质混合气压燃和非均质混合气压燃/引燃4种。分析了这4种燃烧模式针对发动机性能和排放方面的特点,讨论了目前存在的问题。认为目前最有实用价值的模式为柴油引燃天然气非均质扩散燃烧,因为其热效率高于火花点火发动机,与传统柴油机相当,而有害排放物排放却较柴油机明显降低,并且相对于HCCI更易实现。  相似文献   

2.
基于2阶段喷射的缸内直喷汽油机HCCI燃烧的研究   总被引:4,自引:0,他引:4  
在缸内直喷汽油机(GDI)上采用2阶段燃油喷射技术来控制缸内混合气形成和燃烧,在GDI发动机上实现了均质混合气压燃(HCCI)燃烧方式,研究了缸内2阶段汽油喷射对HCCI燃烧特性的影响。结果表明,压缩行程中的第2次喷油时间可以有效地控制燃烧始点,二次喷油持续期可以控制燃烧速率、燃烧相位和拓宽发动机负荷。  相似文献   

3.
设计、开发了50 M Pa高压汽油直喷喷油器,在定容弹上研究了喷油器喷雾特性随喷射压力的变化关系,并在一台均质混合的缸内直喷光学单缸机上,通过燃烧分析和高速摄影等技术手段,研究了50 M Pa高压汽油直喷技术对燃烧过程和排放的影响.结果表明:相较于当前主流的35 M Pa缸内汽油直喷系统,将喷射压力提升至50 M Pa仍能进一步降低喷雾粒径,改善油气混合过程,特别是在中高负荷区域能较大幅度降低未燃碳氢化合物及颗粒物排放,具有一定的潜在应用价值.  相似文献   

4.
汽油机缸内直喷技术作为目前市场上广泛应用的一种先进发动机技术具有广阔的应用前景。文中详细介绍了汽油机缸内直喷的混合气形成模式、燃烧模式和该技术对发动机动力性、经济性和排放特性的影响,并对采用缸内直喷技术对发动机其他部件的要求进行了简单分析。  相似文献   

5.
为了研究不同运转参数对掺氢天然气均质压燃(HCCI)发动机的燃烧特性影响,基于Chemkin模拟软件,结合GRI-Mech3.0化学反应动力学机理,建立了HCCI 发动机的数值模型。数值模拟了掺氢天然气HCCI发动机在掺氢体积比为5%时不同运转参数下的燃烧特性,主要包括对发动机燃烧过程中缸内压力、温度、燃烧放热率和NOx排放的影响。结果表明,在掺氢天然气HCCI发动机燃烧过程中,转速变化对缸内温度、压力和燃烧放热率的影响不大,但NOx排放随转速增大而减小;缸内温度、压力、燃烧放热率及NOx排放随过量空气系数增大而降低;缸内压力、燃烧放热率及NOx排放随进气压力增大而提高,进气压力对缸内温度影响较小;缸内温度、压力、燃烧放热率及NOx排放随进气温度增大而提高。为实际改善掺氢天然气HCCI发动机的燃烧动力性、经济性和减少排放提供了理论依据。  相似文献   

6.
缸内直喷汽油机技术发展趋势分析   总被引:7,自引:0,他引:7  
介绍了缸内直喷(GDI)发动机技术发展过程及现状。对比分析了GDI发动机与气门口喷射(PFI)发动机的性能特点,GDI发动机相对于成熟的PFI发动机仍具有较多优势。分析了GDI发动机技术发展面临的主要问题,可以看出,排放、燃烧稳定性等方面的问题限制了分层稀燃GDI发动机普遍应用。探讨了GDI发动机燃烧系统特点及发展趋势,阐述了过量空气系数a=1的GDI均质混合燃烧方式、分层充气或均质(a=1)充气的涡轮增压技术、优化燃烧系统扩大分层稀燃区域、实现GDI发动机的HCCI燃烧等4个GDI发动机技术发展方向。  相似文献   

7.
《汽车实用技术》2012,(4):49-49
中国第一台大功率缸内高压直喷压燃式天然气发动机(简称HPDI发动机)上市发布仪式近日在京举行。这一技术创新成果,是由中国首家研发和生产缸内直喷天然气发动机的合资公司——潍柴动力西港新能源发动机有限公司推出的。该项目的开发成功,填补了国内天然气缸内直喷发动机在应用领域的空白,将是中国天然气发动机发展史上的一个里程碑。  相似文献   

8.
《车用发动机》2006,(2):24-24
丰田公司的D-4S发动机安装了新型燃油喷射系统,即各缸分别装有缸内直喷式喷油嚣和进气道燃油喷射器的双喷油系统。发动机在高负荷时,由于缸内直喷的进气冷却效果使充量效率提高,改善敲缸,从而实现了高压缩比下的高功率;发动机在中低负荷时,对缸内直喷和进气道喷射两套系统进行最佳控制,力求降低油耗并使燃烧稳定。此外,在冷起动后使催化器尽快暖机,实现净化排放。D-4S发动机的缸内直喷式喷油器采用了可提高喷雾空间分散性的高压双缝喷嘴喷油器,高雾化的燃油从2个喷口喷射到燃烧室,从而实现了均质燃烧。  相似文献   

9.
开发了液化天然气(LNG)缸内直喷多缸发动机,通过对不同的燃烧室设计和喷嘴布置方案进行仿真分析,开发了新的燃烧系统,设计了电控系统软硬件和满足天然气缸内直喷的LNG燃料供给系统.对LNG缸内直喷发动机、原汽油机和天然气进气道喷射发动机进行了台架试验对比研究,结果表明:直喷机中低转速时动力性与原汽油机相同,总功率和最大扭...  相似文献   

10.
在1台侧向进气的单缸发动机上对分层和均质充气燃烧进行了试验研究。通过灵活的喷油和点火控制策略实现了缸内的分层充气和均质充气燃烧。在线分析了各种工况下分层和均质充气燃烧及排放状况。研究表明,随着过量空气系数的增加,分层燃烧的性能明显优于均质燃烧,并且在稀燃状态下,分层燃烧能获得比均质燃烧更好的燃烧稳定性。在所有研究工况下,分层燃烧都能够有效地降低NOx排放。  相似文献   

11.
基于柴油机的电控天然气发动机设计   总被引:1,自引:0,他引:1  
在某柴油机基础上通过改进燃烧系统和进气系统,设计高能点火系统、燃料供给系统、电控单元、传感器及执行器,并加装三元催化转换器,采用闭环空燃比控制等措施,研制了压缩天然气(CNG)单燃料电控多点顺序喷射发动机。试验结果表明,天然气发动机的动力性能与排放性能达到了设计要求。  相似文献   

12.
为使天然气发动机满足现阶段排放要求,主流企业均采用当量燃烧+EGR+TWC技术路线,文章通过研究一种提高天然气发动机进气量的燃烧及相应的尾气净化技术,同样可以满足排放要求,且发动机无需EGR,结构简单,气耗更低,同时有效降低整车热负荷,为重型天然气发动机满足更高排放要求提供新的解决思路.  相似文献   

13.
天然气/柴油双燃料发动机电控喷气技术研究   总被引:5,自引:0,他引:5  
高青  梁宝山  李虎  张纪鹏  孙济美 《汽车工程》2000,22(6):389-392,412
本文研制开发了天然气/柴油双燃料发动机的压缩天然气(CNG)电控喷气系统。试验表明,电控喷气可以明显改善双燃料发动机的燃料经济性和排放性能,提高发动机的热效率。合理选择加载喷射压力和喷射相位可有效地提高燃烧速度和燃烧稳定性。  相似文献   

14.
汽油/CNG双燃料发动机的试验研究   总被引:1,自引:0,他引:1  
将HH368Q汽油机改装成汽油/CNG双燃料发动机,在相同试验条件下,分别对燃用汽油和CNG时的动力性和排放性能进行对比试验,结果表明,改装后的发动机燃用CNG时比燃用汽油时的动力性下降13%;在怠速和中、小负荷工况时排放却比燃用汽油时有明显下降。同时,还对三元催化反应器对燃用CNG时的催化效率和CNG作为代用燃料时发动机存在的问题进行了讨论。  相似文献   

15.
通过重新构建引燃油着火模型和双燃料燃烧模型,对在不同当量比情况下,引燃油雾化、蒸发与着火的特点及对燃烧过程的影响进行了较深入的理论研究,提出了柴油引燃预混合天然气实现准均质压燃着火的引燃油喷油特性。  相似文献   

16.
为了改善增压天然气发动机的燃烧状况、提高发动机的性能,对某发电用增压天然气发动机爆震现象进行研究。利用 GT‐Power 软件建立了增压天然气发动机整机仿真模型,通过模拟数据与试验数据的对比验证了模型的准确性,然后在仿真模型中利用自主建立的爆震预测模型对天然气发动机的性能和爆震现象进行了模拟计算,并对得到的数值结果进行分析。结果表明:随着压缩比的增加,发动机发生爆震的可能性增大,爆震开始时刻提前,爆震强度增大,燃气消耗率呈现先减小后增大的趋势,压缩比为13时,燃气消耗率最小;随着点火提前角的增加,发动机发生爆震的可能性增大,爆震开始时刻提前,爆震强度基本不变,燃气消耗率变化趋势是先减小后增大,当点火提前角为-21°时,燃气消耗率最小。  相似文献   

17.
针对一台车用天然气发动机排气能量的变化规律,建立了带回热器有机朗肯循环系统,对比分析了采用纯工质R245fa和非共沸混合工质R416A时,带回热器有机朗肯循环系统的净输出功率、热效率、效率和单位工质能量输出密度。结果表明,采用非共沸混合工质R416A时上述各项性能指标均优于采用纯工质R245fa。最后,构建了天然气发动机-带回热器有机朗肯循环联合系统,采用非共沸混合工质R416A,分析了联合系统的热效率。结果表明,加装带回热器有机朗肯循环系统后,发动机热效率最大可提高7%。  相似文献   

18.
对天然气发动机做了改变压缩比的性能试验 ,进行了动力性和排放性的比较 ,同时分析了加装EGR对天然气发动机动力性能和排放的影响  相似文献   

19.
Natural gas fuel, as an alternative energy source of transportation, has been used widely since it has an advantage of low emission levels. However, new technologies are required in order to meet the reinforced emission regulations. For this purpose, research into the development of hydrogen-compressed natural gas (HCNG) blend engine was carried out to evaluate its feasibility and emission characteristics. The Engine Research Department at the Korea Institute of Machinery and Materials carried out a large number of tests based on various parameter changes that could affect the performance and emission of HCNG engine in different operating conditions. An earlier stage of the research project focused on the lean combustion of a HCNG engine for heavy duty vehicles to meet the EURO-VI standards. An 11-L/6-cylinder CNG engine was used for the test. The effects of the excess air ratio change were assessed based on various content ratios of hydrogen in the natural gas fuel. In the later part of the HCNG research, a stoichiometric mixture operation was suggested to meet reinforced emission regulation without requiring a De-NOx system. Additionally, an exhaust gas recirculation (EGR) system was introduced for the purpose of improving thermal efficiency and durability. The optimal operating conditions were selected to achieve the best thermal efficiency to meet the required emission levels. In this paper, we demonstrate that a HCNG engine can achieve a significant decrease in NOx emissions, as compared to that of a CNG engine, while meeting the requirements of the EURO-VI standards during a transient mode cycle test. EGR can suppress the weakness of stoichiometric mixture combustion strategy, such as the deterioration of the durability and thermal efficiency, while the emission level can be lowered with the use of a three-way catalyst. The possibility of further reduction of emissions and CO2 with EGR was evaluated to access practical application of a HCNG engine in the field. From that evaluation, the HCNG engine with stoichiometric mixture operation for heavy duty vehicles was developed. The emission levels of HCNG engine were 50 % lower when compared to the EURO-VI standards with a greater than 10 % decrease in CO2 compared to that of a natural gas engine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号