首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hardware-in-the-loop (HiL) is a testing method in which real-time measurements on physical hardware replace the mathematical model of the particular hardware during simulation. The development of a semi-active suspension prompted the need for such capability. HiL, implemented on a PC with a dSpaceTM board in conjunction with a hydrodynamic actuator, was compared to software simulations of single degree of freedom (DOF) and two DOF systems. HiL was also compared to a physical (ballast-based) two DOF system, comprising the rear suspension of a motorcycle. Comparisons between the HiL and software responses showed its suitability for testing suspension systems, thus providing a viable alternative to ballast-based suspension tests, using available hardware. The research also showed that actuator dynamics, filter types and amounts, and signal reference levels required special consideration.  相似文献   

2.
ABSTRACT

We put forward three actuator placements of the high-speed train power bogie to improve the train hunting stability. The active control forces act on the frame, between the frame and the motor, and on the motor by the inertial or retractable actuator, respectively, based on the feedback states of vibration velocity of the front and rear end beams. The feedback gains and the motor suspension parameters in different cases are optimised with the two objectives of system stability margin and control effort. The required actuator outputs of the three cases are compared based on the theoretical analysis with a 8 DOF bogie model. The results show that the three control cases can effectively improve the hunting stability, especially at high speed. The active control of motor lateral movement is helpful to increase the dynamic vibration absorbing function of the motor flexible suspension, and the control output is obviously smaller than the other two control cases. In addition, the influence of system delay on stability was analysed and we could use or avoid the effects of delay on the stability.  相似文献   

3.
对于全自动泊车系统搭载的线控换挡执行机构,由于制造、装配误差会导致线控换挡执行机构装配于变速器后的R、N、D位置可能会与实际情况有偏差,从而影响变速器性能,所以从系统的动力学特性出发,提出了一种线控换挡执行机构下线学习算法,利用Matlab/Simulink建立系统动力学模型和算法模型,并开发了线控换挡执行机构控制器软硬件。通过仿真分析与实际台架测试表明,该下线挡位位置自学习算法能够在很短的时间内学习到精确的R、N、D挡位位置,不仅满足了车辆下线对时间的严格要求,还满足了变速器换挡的精度要求。  相似文献   

4.
The main purpose of this paper is to propose a new nonlinear model of the Macpherson strut suspension system for ride control applications. The model includes the vertical acceleration of the sprung mass and incorporates the suspension linkage kinematics. This two-degree-of-freedom (DOF) model not only provides a more accurate representation of the Macpherson suspension system for control applications in order to improve the ride quality, but also facilitates evaluation of the suspension kinematic parameters, such as camber, caster and king-pin angles as well as track alterations on the ride vibrations. The performances of the nonlinear and linearised models are investigated and compared with those of the conventional model. Besides, it is shown that the semi-active force improves the ride quality better than active force, while the opposite is true in terms of improving the performance of the kinematic parameters. The results of variations of the kinematic parameters based on the linear model subject to road disturbances are compared with those of a virtual prototype of Macpherson suspension in ADAMS software. The analytical results in both cases are shown to agree with each other.  相似文献   

5.
Hierarchical control is a new control framework in the vehicle vibration control field. In this paper, a hierarchical modeling method is presented to form a different motorcycle model, compared to the traditional model with six degrees of freedoms (DOF), so as to construct hierarchical modeling control. The whole control framework is composed of a central control, two local controls and two uncontrollable parts. The front and rear wheel systems of a motorcycle are all dealt with by using two independent local 2-DOF systems. The driver and engine act as uncontrollable passive parts. The central control is composed of an algorithm made up of some dynamic equations that harmonize local relations. The vertical and pitch accelerations of the suspension center are treated as central control objects. With the help of Linear Quadratic Gaussian (LQG) algorithms adopted by two local controls, respectively, and Matlab software, some results of the simulation show that hierarchical modeling control requires less CPU time, reduces respond time and improves ride quality.  相似文献   

6.
An Experimental Investigation of Preview Control   总被引:3,自引:0,他引:3  
There is mounting theoretical evidence to suggest that preview control can be of substantial benefit to a semi-active suspension for random road inputs. In this paper, the benefits of wheel-base preview control are measured experimentally, using a prototype semi-active damper in a half-car 'Hardware-in-the-loop' (HiL) rig with a planar two-axle heavy vehicle model. The benefits of preview control using the prototype semi-active damper are found to be less than theoretically possible, due to the phase lag between the demanded and achieved damping force. It is shown that the performance of the prototype damper can be improved significantly by having a theoretical simulation running ahead of the HiL vehicle. The theoretical simulation is used to predict the demanded damper force for the HiL vehicle, and thereby compensate for the phase lag in the prototype damper.  相似文献   

7.
There is mounting theoretical evidence to suggest that preview control can be of substantial benefit to a semi-active suspension for random road inputs. In this paper, the benefits of wheel-base preview control are measured experimentally, using a prototype semi-active damper in a half-car ‘Hardware-in-the-loop’ (HiL) rig with a planar two-axle heavy vehicle model. The benefits of preview control using the prototype semi-active damper are found to be less than theoretically possible, due to the phase lag between the demanded and achieved damping force. It is shown that the performance of the prototype damper can be improved significantly by having a theoretical simulation running ahead of the HiL vehicle. The theoretical simulation is used to predict the demanded damper force for the HiL vehicle, and thereby compensate for the phase lag in the prototype damper.  相似文献   

8.
电子节气门辨识建模方法研究   总被引:1,自引:0,他引:1  
以某型电子节气门执行器为研究对象,建立硬件在环仿真试验平台,应用最小二乘法和Levenberg-Marquardt(LM)算法,分别采用ARX,ARMAX和神经网络辨识模型对电子节气门进行辨识试验,并对上述辨识方法所得到的模型进行比较。结果表明:采用非线性的神经网络模型能很好地模拟电子节气门系统的特性;在一定条件下,也可采用ARMAX模型作为电子节气门系统模型进行仿真研究和控制器的设计,以减少控制系统的研发成本。  相似文献   

9.
In this paper, it is aimed to investigate semi-active suspension systems using magnetorheological (MR) fluid dampers for improving the ride quality of railway vehicles. A 17-degree-of-freedom (DOF) model of a full-scale railway vehicle integrated with the semi-active controlled MR fluid dampers in its secondary suspension system is proposed to cope with the lateral, yaw, and roll motions of the car body, trucks, and wheelsets. The governing equations combining the dynamics of the railway vehicle integrated with MR dampers in the suspension system and the dynamics of the rail track irregularities are developed and a linear quadratic Gaussian (LQG) control law using the acceleration feedback is adopted, in which the state variables are estimated from the measurable accelerations with a Kalman estimator. In order to evaluate the performances of the semi-active suspension systems based on MR dampers for railway vehicles, the random and periodical track irregularities are modelled with a uniform state-space formulation according to the testing data and incorporated into the governing equation of the railway vehicle integrated with the semi-active suspension system. Utilising the governing equations and the semi-active controller developed in this paper, the simulation and analysis are presented in Part II of this paper.  相似文献   

10.
以汽车操纵稳定性及行驶平顺性为控制目标,提出一种在线可调整的模糊控制算法,其模糊控制规则表可以用解析的方法进行计算。针对简化的汽车模型,为控制悬架系统的振动设计了自调整模糊控制器。与自适应控制主动悬架系统相比较,在两自由度悬架系统试验台架上进行了对比试验研究,结果表明该算法对汽车的振动控制具有明显效果,进一步说明提出的算法对汽车悬架系统的振动控制具有较好的适应性。  相似文献   

11.
文章系统介绍了应用ADAMS软件建立多自由度汽车整车动力学模型的方法,并且建立与实际悬架系统和转向系统结构相对应并考虑系统弹性变形的42自由度整车动力学模型,研究高速行驶时方向盘抖动的主要原因。  相似文献   

12.
ABSTRACT

The equivalent spring and damper are often used to simplify the dynamic analysis of a nonlinear full-vehicle model. Clearly, those rates are strongly influenced by the kinematics of a suspension mechanism. This paper presents a new approach to the identification of the equivalent suspension and damping rates. The suspension is considered as a 1-degree-of-freedom (DOF) spatial parallel mechanism. The instantaneous kinestatic relations of the 1-DOF spatial parallel mechanism can be described using the theory of screws. The process of identification of the rates involves three steps: first, the joint positions of the suspension are found from the displacement analysis of the suspension mechanism. Second, the motion of each wheel of four suspension mechanisms is represented by the corresponding instantaneous screw at any instant. Third, the equivalent suspension and damping rates are determined from the kinestatic relations of the instantaneous screw. These rates are used for the dynamic analysis of the nonlinear full-vehicle model consisting of two pairs of the front (double-wishbone) and rear (multi-link) suspensions. Two dynamic behaviours of a car are analysed and compared with the simulation utilising the Adams/View software.  相似文献   

13.
This paper investigates the benefits of lateral stability of train suspension systems employing a newly developed mechanical network element known as an inerter. An inerter was proposed as an ideal mechanical two-port element to substitute for the mass element in the mechanical/electrical analogy. As of now, inerters have been successfully applied to car and motorcycle suspension systems, for which significant performance benefits were reported. This paper discusses the improvements on lateral stability of train suspension systems employing inerters. The study was carried out in three parts. First, an existing 12 degrees-of-freedom (DOF) train model was built and verified by a multi-body-builder, AutoSimTM. Second, inerters were applied to the train suspension system to increase the critical speed. Finally, the discussion was extended to a 16-DOF model to demonstrate the performance improvement by inerters. From the results, inerters were deemed effective in improving the lateral stability of train suspension systems.  相似文献   

14.
The paper describes the development of an adaptive control algorithm for active suspension systems based on optimal regulation methods. The objective is to design an algorithm which will automatically tune at start-up to changed vehicle conditions and adaptively re-tune to changes in driving conditions (in particular road generated disturbances). The proposed algorithm is a self-tuning regulator based on generalised minimum variance (GMV) control. Simulation results obtained for a 3 degree-of-freedom (DOF) quarter car suspension demonstrate potential benefits of fully adaptive control in automotive suspensions.  相似文献   

15.
Two possible layouts of a slow-active suspension model are analysed. Optimal control laws for different actuator bandwidths and various amounts of road preview are generated, and estimates of power consumption are made. Higher bandwidth systems (10Hz) require less preview to obtain a given level of performance than those with a lower bandwidth (3Hz) but use more energy in doing so. Similar performance is available from the two systems considered, although the second uses considerably less energy to obtain that performance.  相似文献   

16.
Fully active ground vehicle suspensions which completely replace the passive spring and damper elements with a force generating actuator have required a significant amount of power. Alternative systems which retain compliant elements to handle high frequency isolation but include active elements to control the vehicle body attitude have been developed to reduce the power requirements. These suspensions are called “low bandwidth” or “fast load leveler” systems and they often incorporate semi-active dampers which produce high frequency controllable forces with low power requirements. Here, two contrasting attitude control systems are studied to show that actuator power can be significantly reduced if the actuator is used to vary a lever ratio instead of being used to compress the suspension spring directly. Both types of systems have been successfully implemented in prototype form. Bond graphs for idealized versions of the suspensions show clearly the significant differences in actuator power and energy requirements even though the abstract mathematical structures of the two systems are remarkably similar. Computer simulations confirm the analytical results.  相似文献   

17.
A continuous time control strategy for an active suspension with preview, based on optimal control theory, is presented. No approximation is needed to model the time delay between the excitation of the front and the rear wheels. The suspension is applied to a two DOF model of the rear side of the tractor of a tractor-semitrailer. The purpose of the suspension is to reduce either the required suspension working space or the maximum absolute acceleration of the sprung mass, without an increase of the dynamic tire force variation. For a step function as road input, reductions of 65% and 55%, respectively, are possible compared with a passive suspension.  相似文献   

18.
汽车磁流变半主动悬架的控制研究   总被引:6,自引:0,他引:6  
为了改善汽车的乘坐舒适性和行驶安全性,提出了一种汽车磁流变半主动悬架的控制策略。首先,设计了磁流变减振器的工作模式,通过试验获得了其速度特性和力学特性,建立了磁流变减振器的数学模型;其次,建立了带磁流变减振器的二自由度车辆简化模型及其参数表;最后,基于双环控制理论,设计了一种控制系统,其外环产生理想的结构阻尼力,内环调节电流驱动器的电流,以使磁流变减振器实时地产生控制阻尼力。仿真结果表明:以磁流变减振器为基础,通过半主动控制技术,悬架系统的振动动态性能得到了有效的控制。  相似文献   

19.
Using methods established in earlier work, calculations are carried out to reveal the influence of actuator bandwidth on the performance capabilities of a class of active suspension system for automobiles. The suspension consists of an actuator in series with a spring, the combination being in parallel with a passive damper, and the system is modelled as a single wheel station traversing a random road. The results indicate that a system with a 3 Hz bandwidth actuator and variable damping will have excellent ride performance qualities over a wide range of road roughness conditions. Since such a system can be expected to be easily adaptable to the running conditions, to provide good static and dynamic attitude control, to be capable of contributing to good steering control responses and to be inexpensive in terms of capital and energy consumption costs compared with most of the active systems which have previously been discussed, it is suggested that it is a prime candidate for further study and practical development.  相似文献   

20.
The paper deals with the theoretical estimation of the minimal power requirement, necessary for the operation of the active vibration control system (AVCS), connected with a passive one. It is assumed this compound system is used for the vibration control purposes in the heavy vehicle driver's seats. The systems considered in the paper are of two kinds. In the first case the electro-hydraulic actuator of the AVCS is situated in series to the spring-damper combination of the seat suspension. The second system under consideration is formed by parallel connection of electro-pneumatic actuator and the spring-damper combination of the seat suspension, which is a mechanical model of a real air spring with controlled in-flow and out-flow of the air. The comparison of results for both compound systems shows markedly higher power consumption of the serial system. The theoretical results are in acceptable agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号