首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Handling efficiently and effectively real-time vehicle control is of major concern of public transport (PT) operators. One related problem is on how to reduce the uncertainty of simultaneous arrivals of two or more vehicles at a transfer point. Improper or lack of certain control actions leads to have missed transfers, one of the undesirable features of the PT service. Missed transfers result in increase of passenger waiting and travel times, and of passenger frustration. This work focuses on reducing the uncertainty of missed transfers by the use of control tactics in real-time operation. The developed model improves the PT service performance by optimally increasing the number of direct transfers and reducing the total passenger travel time. This model consists of two policies built upon a combination of two tactics: holding and skip-stop/segment, where a segment is a group of stops. The implementation of the concept is performed in two steps: optimization and simulation. The optimization searches for the best combination of operational tactics. The simulation serves as a validation of the optimal results under a stochastic framework. A case in Auckland, New Zealand is used. The results show that by applying the holding-skip stop, and holding-skip segment tactics the number of direct transfers are increased by about 100% and 150%, and the total passenger travel time is reduced by 2.14% and 4.1%, respectively, compared with the no-tactic scenario. The holding-skip segment tactic results with 47% more direct transfers than the holding-skip stop tactic for short headway operation.  相似文献   

2.
Service reliability of public transportation (PT) systems is a dominant ingredient in what is perceived as the PT image. Unreliable service increases the uncertainties of simultaneous arrivals of vehicles at a transfer point. Implementing proper control actions leads to preventing missed transfers, one of the undesirable features of PT service and a major contributor to a negative image. The present work focuses on performance measurements of a PT system offering direct transfers on multi-legged trips. The method developed evaluates and improves system performance by applying selected operational tactics in real-time scenarios. In order to investigate the efficiency level of the PT system, five types of vehicle positional situations with reference to a transfer point are considered: considerably ahead of schedule, ahead of schedule, on schedule, behind schedule, and considerably behind schedule. Each situation contributes differently to the degree of system performance. The optimization framework developed results in selected operational tactics to attain the maximum number of direct (without waiting) transfers and minimize total passenger travel time. The implementation of the concept is performed in two steps: optimization and simulation. The optimization process searches for the best operational tactics, using the states of the five vehicle-position types, and the simulation serves to validate the optimal results under a stochastic framework using the concept of a multi-agent system. A case study of Auckland, New Zealand, is described for assessing the methodology developed. Results showed a 58% improvement in the system performance index compared to no-tactic operations.  相似文献   

3.
Public Transport (PT) systems rely more and more on online information extracted from both operator’s intelligent equipment and user’s smartphone applications. This allows for a better fit between supply and demand of the multimodal PT system, especially through the use of PT real-time control actions/tactics. In doing so there is also an opportunity to consider environmental-related issues to approach energy saving and reduced pollution. This study investigates and analyses the benefits of using real-time PT operational tactics in reducing the undesirable environmental impacts. A tactic-based control (TBC) optimization model is used to minimize total passenger travel time and maximize direct transfers (without waiting). The model consists of a control policy built upon a combination of three tactics: holding, skip-stops, and boarding limit. The environmental-related measure is the global warming potential (GWP) using the life cycle assessment technique. The methodology developed is applied to a real life case study in Auckland, New Zealand. Results show that TBC could reduce the GWP by means of reduction of total passenger travel times and vehicle travel cycle time. That is, the TBC model results in a 5.6% reduction in total GWP per day compared with an existing no-tactic scenario. This study supports the use of real-time control actions to maintain a reliable PT service, reducing greenhouse gas emissions and subsequently moving towards greener PT systems.  相似文献   

4.
This work focuses on improving transit-service reliability by optimally reducing the transfer time required in the operations of transit networks. Service reliability of public-transit operations is receiving increased attention as agencies are faced with immediate problems of proving credible service while attempting to reduce operating cost. Unreliable service has also been cited as the major deterrent to existing and potential passengers. Due to the fact that most of the public transit attributes are stochastic: travel time, dwell time, demand, etc., the passenger is likely to experience unplanned waiting times and ride times. One of the main components of service reliability is the use of transfers. Transfers have the advantages of reducing operational costs and introducing more flexible and efficient route planning. However its main drawback is the inconvenience of traveling multi-legged trips. This work introduces synchronized (timed) time-tables to diminish the waiting time caused by transfers. Their use, however, suffers from uncertainty about the simultaneous arrival of two (or more) vehicles at an existing stop. In order to alleviate the uncertainty of simultaneous arrivals, operational tactics such as hold, skip stop and short-turn can be deployed considering the positive and negative effects, of each tactic, on the total travel time. A dynamic programming model was developed for minimizing the total travel time resulting with a set of preferred tactics to be deployed. This work describes the optimization model using simulation for validation of the results attained. The results confirm the benefits of the model with 10% reduction of total travel time and more than 200% increase of direct transfers (transfers in which both vehicles arrive simultaneously to the transfer point).  相似文献   

5.
This paper models part of a public transport network (PTN), specifically, a bus route, as a small-size multi-agent system (MAS). The proposed approach is applied to a case study considering a ‘real world’ bus line within the PTN in Auckland, New Zealand. The MAS-based analysis uses modeling and simulation to examine the characteristics of the observed system – autonomous agents interacting with one another – under different scenarios, considering bus capacity and frequency of service for existing and projected public transport (PT) demand. A simulation model of a bus route is developed, calibrated and validated. Several results are attained, such as when the PT passenger load is not close to bus capacity, this load has no effect on average passenger waiting time at bus stops. The model proposed can be useful to practitioners as a tool to model the interaction between buses and other agents.  相似文献   

6.
This paper describes a connected-vehicle-based system architecture which can provide more precise and comprehensive information on bus movements and passenger status. Then a dynamic control method is proposed using connected vehicle data. Traditionally, the bus bunching problem has been formulated into one of two types of optimization problem. The first uses total passenger time cost as the objective function and capacity, safe headway, and other factors as constraints. Due to the large number of scenarios considered, this type of framework is inefficient for real-time implementation. The other type uses headway adherence as the objective and applies a feedback control framework to minimize headway variations. Due to the simplicity in the formulation and solution algorithms, the headway-based models are more suitable for real-time transit operations. However, the headway-based feedback control framework proposed in the literature still assumes homogeneous conditions at all bus stations, and does not consider restricting passenger loads within the capacity constraints. In this paper, a dynamic control framework is proposed to improve not only headway adherence but also maintain the stability of passenger load within bus capacity in both homogenous and heterogeneous situations at bus stations. The study provides the stability conditions for optimal control with heterogeneous bus conditions and derives optimal control strategies to minimize passenger transit cost while maintaining vehicle loading within capacity constraints. The proposed model is validated with a numerical analysis and case study based on field data collected in Chengdu, China. The results show that the proposed model performs well on high-demand bus routes.  相似文献   

7.
Passenger transportation in most large cities relies on an efficient mass transit system, whose line configuration has direct impacts on the system operating cost, passenger travel time and line transfers. Unfortunately, the interplay between transit line configuration and passenger line assignment has been largely ignored in the literature. This paper presents a model for simultaneous optimization of transit line configuration and passenger line assignment in a general network. The model is formulated as a linear binary integer program and can be solved by the standard branch and bound method. The model is illustrated with a couple of minimum spanning tree networks and a simplified version of the general Hong Kong mass transit railway network.  相似文献   

8.
This paper focuses on developing mathematical optimization models for the train timetabling problem with respect to dynamic travel demand and capacity constraints. The train scheduling models presented in this paper aim to minimize passenger waiting times at public transit terminals. Linear and non-linear formulations of the problem are presented. The non-linear formulation is then improved through introducing service frequency variables. Heuristic rules are suggested and embedded in the improved non-linear formulation to reduce the computational time effort needed to find the upper bound. The effectiveness of the proposed train timetabling models is illustrated through the application to an underground urban rail line in the city of Tehran. The results demonstrate the effectiveness of the proposed demand-oriented train timetabling models, in terms of decreasing passenger waiting times. Compared to the baseline and regular timetables, total waiting time is reduced by 6.36% and 10.55% respectively, through the proposed mathematical optimization models.  相似文献   

9.
This paper develops a mathematical model to calculate the average waiting time for passengers transferring from rail transit to buses based on the statistical analysis of primary data collected in Beijing. An important part of the average waiting time modelling is to analyse the distributions of passenger arrival rates. It is shown that the lognormal and gamma distributions have the best fit for direct transfer and non-direct transfer passengers, respectively. Subsequently, an average waiting time model for transferring passengers is developed based on passenger arrival rate distributions. Furthermore, case studies are conducted for two scenarios with real and estimated data, resulting in relative errors of ?3.69% and ?3.77%, respectively. Finally, the paper analyses the impacts of bus headway, the headway of rail cars, and the proportion of direct transfer passengers on average waiting time.  相似文献   

10.

High-speed rail operations have the potential to reduce the long-term decline in rail passenger travel demand for the medium to long distance inter-urban markets. Such decline has been evident through most of the industrialized countries where air and road transport tend to be the dominant modes. In China, the operations of long distance high-speed rail on fully dedicated track is not very easy to implement, due to the high proportion of passengers who travel between high-speed and conventional railways. An alternative approach would be to allow for mixed operations with trains of various speeds on the same track. This article puts forward a simulation model designed to allow an evaluation of the most efficient distance for high-speed rail operations under mixed train speed scenarios. The model takes into account the main operating parameters such as passenger volumes, train speeds, capital and maintenance costs, train operating costs and energy consumption. The distance of high-speed train running on conventional rail that will yield the most economic benefit can be estimated using the model. The article includes the results of using the model for a specific example. It is concluded that large-scale high-speed trains have the potential to be successfully operated on conventional rail networks.  相似文献   

11.
The effects of high passenger density at bus stops, at rail stations, inside buses and trains are diverse. This paper examines the multiple dimensions of passenger crowding related to public transport demand, supply and operations, including effects on operating speed, waiting time, travel time reliability, passengers’ wellbeing, valuation of waiting and in-vehicle time savings, route and bus choice, and optimal levels of frequency, vehicle size and fare. Secondly, crowding externalities are estimated for rail and bus services in Sydney, in order to show the impact of crowding on the estimated value of in-vehicle time savings and demand prediction. Using Multinomial Logit (MNL) and Error Components (EC) models, we show that alternative assumptions concerning the threshold load factor that triggers a crowding externality effect do have an influence on the value of travel time (VTTS) for low occupancy levels (all passengers sitting); however, for high occupancy levels, alternative crowding models estimate similar VTTS. Importantly, if demand for a public transport service is estimated without explicit consideration of crowding as a source of disutility for passengers, demand will be overestimated if the service is designed to have a number of standees beyond a threshold, as analytically shown using a MNL choice model. More research is needed to explore if these findings hold with more complex choice models and in other contexts.  相似文献   

12.
Passengers may make several transfers between different lines to reach their destinations in urban railway transit networks. Coordination of last trains in feeding lines and connecting lines at transfer stations is especially important because it is the last chance for many travellers to transfer. In this paper, a mathematical method is used to reveal the relationships between passenger transfer connection time (PTCT) and passenger transfer waiting time (PTWT). A last-train network transfer model (LNTM) is established to maximize passenger transfer connection headways (PTCH), which reflect last-train connections and transfer waiting time. Additionally, a genetic algorithm (GA) is developed based upon this LNTM model and used to test a numerical example to verify its effectiveness. Finally, the Beijing subway network is taken as a case study. The results of the numerical example show that the model improves five connections and reduces to zero the number of cases when a feeder train arrives within one headway’s time after the connecting train departed.  相似文献   

13.
Abstract

Walking from origins to transit stops, transferring between transit lines and walking from transit stops to destinations—all add to the burden of transit travel, sometimes to a very large degree. Transfers in particular can be stressful and/or time‐consuming for travellers, discouraging transit use. As such, transit facilities that reduce the burdens of walking, waiting and transferring can substantially increase transit system efficacy and use. In this paper, we argue that transit planning research on transit stops and stations, and transit planning practice frequently lack a clear conceptual framework relating transit waits and transfers with what we know about travel behaviour. Therefore, we draw on the concepts of transfer penalties and value of time in the travel behaviour/economics literature to develop a framework that situates transfer penalties within the total travel generalized costs of a transit trip. For example, value of time is important in relating actual time of waiting and walking to the perceived time of travel. We also draw on research to classify factors most important to users’ perspectives and travel behaviour—transfer costs, time scheduling and five transfer facility attributes: (1) access, (2) connection and reliability, (3) information, (4) amenities, and (5) security and safety. Using this framework, we seek to explicitly relate improvements of transfer stops/stations with components of transfer penalties and changes in travel behaviour (through a reduction in transfer penalties). We conclude that the employment of such a framework can help practitioners better apply the most effective improvements to transit stops and transfer facilities.  相似文献   

14.
This paper focuses on how to minimize the total passenger waiting time at stations by computing and adjusting train timetables for a rail corridor with given time-varying origin-to-destination passenger demand matrices. Given predetermined train skip-stop patterns, a unified quadratic integer programming model with linear constraints is developed to jointly synchronize effective passenger loading time windows and train arrival and departure times at each station. A set of quadratic and quasi-quadratic objective functions are proposed to precisely formulate the total waiting time under both minute-dependent demand and hour-dependent demand volumes from different origin–destination pairs. We construct mathematically rigorous and algorithmically tractable nonlinear mixed integer programming models for both real-time scheduling and medium-term planning applications. The proposed models are implemented using general purpose high-level optimization solvers, and the model effectiveness is further examined through numerical experiments of real-world rail train timetabling test cases.  相似文献   

15.
This paper assesses the demand for a flexible, demand-adaptive transit service, using the Chicago region as an example. We designed and implemented a stated-preference survey in order to (1) identify potential users of flexible transit, and (2) inform the service design of the flexible transit mode. Multinomial logit, mixed-logit, and panel mixed-logit choice models were estimated using the data obtained from the survey. The survey instrument employed a dp-efficient design and the Google Maps API to capture precise origins and destinations in order to create realistic choice scenarios. The stated-preference experiments offered respondents a choice between traditional transit, car, and a hypothetical flexible transit mode. Wait time, access time, travel time, service frequency, cost, and number of transfers varied across the choice scenarios. The choice model results indicate mode-specific values of in-vehicle travel time ranging between $16.3 per hour (car) and $21.1 per hour (flexible transit). The estimated value of walking time to transit is $25.9 per hour. The estimated value of waiting time at one’s point of origin for a flexible transit vehicle is $11.3 per hour; this value is significantly lower than the disutility typically associated with waiting at a transit stop/station indicating that the ‘at-home’ pick-up option of flexible transit is a highly desirable feature. The choice model results also indicate that respondents who use active-transport modes or public transit for their current commute trip, or are bikeshare members, were significantly more likely to choose flexible and traditional transit than car commuters in the choice experiments. The implications of these and other relevant model results for the design and delivery of flexible, technology-enabled services are discussed.  相似文献   

16.
Ad hoc shared ride trip planning (SRTP) utilizes mobile devices, geo-sensors and wireless networks to match on-the-fly individual travel demand with transport supply. It represents one of many alternatives to single occupancy vehicle use. This paper outlines a SRTP approach via a two-phase algorithm based on user preferences in a time-dependent routing. Whereas current algorithms use minimization of travel time as the only optimization criterion in trip planning, in the framework presented here, the user can specify multiple trip preferences including travel time, walking time, number of transfers between cars and trip length. Various scenarios are simulated in the city of Tehran (Iran) to demonstrate how preference settings affect the routes of ad hoc shared journeys.  相似文献   

17.
We present a transit equilibrium model in which boarding decisions are stochastic. The model incorporates congestion, reflected in higher waiting times at bus stops and increasing in-vehicle travel time. The stochastic behavior of passengers is introduced through a probability for passengers to choose boarding a specific bus of a certain service. The modeling approach generates a stochastic common-lines problem, in which every line has a chance to be chosen by each passenger. The formulation is a generalization of deterministic transit assignment models where passengers are assumed to travel according to shortest hyperpaths. We prove existence of equilibrium in the simplified case of parallel lines (stochastic common-lines problem) and provide a formulation for a more general network problem (stochastic transit equilibrium). The resulting waiting time and network load expressions are validated through simulation. An algorithm to solve the general stochastic transit equilibrium is proposed and applied to a sample network; the algorithm works well and generates consistent results when considering the stochastic nature of the decisions, which motivates the implementation of the methodology on a real-size network case as the next step of this research.  相似文献   

18.
Cross‐border passengers from Hong Kong to Shenzhen by the east Kowloon‐Canton Railway (KCR) through the Lo Wu customs exceed nearly 200 thousand on a special day such as a day during the Chinese Spring Festival. Such heavy passenger demand often exceeds the processing and holding capacity of the Lo Wu customs for many hours a day. Thus, passengers must be metered off at all entrance stations along the KCR line through ticket rationing to restrain the number of passengers waiting at Lo Wu within its safe holding capacity. This paper proposes an optimal control strategy and model to deal with this passenger crowding and control problem. Because the maximum passenger checkout rate at Lo Wu is fixed, total passenger waiting time is not affected by the control strategy for given time‐dependent arriving rates at each station. An equity‐based control strategy is thus proposed to equalize the waiting times of passengers arriving at all stations at the same time. This equity is achieved through optimal allocation of the total quota of tickets to all entrance stations for each train service. The total ticket quota for each train service is determined such that the capacity constraint of the passenger queue at Lo Wu is satisfied. The control problem is formulated as a successive linear programming problem and demonstrated for the KCR system with partially simulated data.  相似文献   

19.
This paper proposes a bi-level model to solve the timetable design problem for an urban rail line. The upper level model aims at determining the headways between trains to minimize total passenger cost, which includes not only the usual perceived travel time cost, but also penalties during travel. With the headways given by the upper level model, passengers’ arrival times at their origin stops are determined by the lower level model, in which the cost-minimizing behavior of each passenger is taken into account. To make the model more realistic, explicit capacity constraints of individual trains are considered. With these constraints, passengers cannot board a full train, but wait in queues for the next coming train. A two-stage genetic algorithm incorporating the method of successive averages is introduced to solve the bi-level model. Two hypothetical examples and a real world case are employed to evaluate the effectiveness of the proposed bi-level model and algorithm. Results show that the bi-level model performs well in reducing total passenger cost, especially in reducing waiting time cost and penalties. And the section loading-rates of trains in the optimized timetable are more balanced than the even-headway timetable. The sensitivity analyses show that passenger’s desired arrival time interval at destination and crowding penalty factor have a high influence on the optimal solution. And with the dispersing of passengers' desired arrival time intervals or the increase of crowding penalty factor, the section loading-rates of trains become more balanced.  相似文献   

20.
Control strategies have been widely used in the literature to counteract the effects of bus bunching in passenger‘s waiting times and its variability. These strategies have only been studied for the case of a single bus line in a corridor. However, in many real cases this assumption does not hold. Indeed, there are many transit corridors with multiple bus lines interacting, and this interaction affects the efficiency of the implemented control mechanism.This work develops an optimization model capable of executing a control scheme based on holding strategy for a corridor with multiple bus lines.We analyzed the benefits in the level of service of the public transport system when considering a central operator who wants to maximize the level of service for users of all the bus lines, versus scenarios where each bus line operates independently. A simulation was carried out considering two medium frequency bus lines that serve a set of stops and where these two bus lines coexist in a given subset of stops. In the simulation we compared the existence of a central operator, using the optimization model we developed, against the independent operation of each line.In the simulations the central operator showed a greater reduction in the overall waiting time of the passengers of 55% compared to a no control scenario. It also provided a balanced load of the buses along the corridor, and a lower variability of the bus headways in the subset of stops where the lines coexist, thus obtaining better reliability for all types of passengers present in the public transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号