首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
    
Vehicle longitudinal control systems such as (commercially available) autonomous Adaptive Cruise Control (ACC) and its more sophisticated variant Cooperative ACC (CACC) could potentially have significant impacts on traffic flow. Accurate models of the dynamic responses of both of these systems are needed to produce realistic predictions of their effects on highway capacity and traffic flow dynamics. This paper describes the development of models of both ACC and CACC control systems that are based on real experimental data. To this end, four production vehicles were equipped with a commercial ACC system and a newly developed CACC controller. The Intelligent Driver Model (IDM) that has been widely used for ACC car-following modeling was also implemented on the production vehicles. These controllers were tested in different traffic situations in order to measure the actual responses of the vehicles. Test results indicate that: (1) the IDM controller when implemented in our experimental test vehicles does not perceptibly follow the speed changes of the preceding vehicle; (2) strings of consecutive ACC vehicles are unstable, amplifying the speed variations of preceding vehicles; and (3) strings of consecutive CACC vehicles overcome these limitations, providing smooth and stable car following responses. Simple but accurate models of the ACC and CACC vehicle following dynamics were derived from the actual measured responses of the vehicles and applied to simulations of some simple multi-vehicle car following scenarios.  相似文献   

2.
In this paper, we use second-by-second automatic vehicle location data to estimate bus emissions near far-side and near-side stops. We classify the bus running state near a stop into approach, dwell, and departure. A vehicle specific power approach is used to estimate bus emissions for each state. We show that bus emissions generated near stops can be significantly reduced by using certain intelligent transportation systems techniques.  相似文献   

3.
Connected Vehicle Technology (CVT) requires wireless data transmission between vehicles (V2V), and vehicle-to-infrastructure (V2I). Evaluating the performance of different network options for V2V and V2I communication that ensure optimal utilization of resources is a prerequisite when designing and developing robust wireless networks for CVT applications. Though dedicated short range communication (DSRC) has been considered as the primary communication option for CVT safety applications, the use of other wireless technologies (e.g., Wi-Fi, LTE, WiMAX) allow longer range communications and throughput requirements that could not be supported by DSRC alone. Further, the use of other wireless technology potentially reduces the need for costly DSRC infrastructure. In this research, the authors evaluated the performance of Het-Net consisting of Wi-Fi, DSRC and LTE technologies for V2V and V2I communications. An application layer handoff method was developed to enable Het-Net communication for two CVT applications: traffic data collection, and forward collision warning. The handoff method ensures the optimal utilization of available communication options (i.e., eliminate the need of using multiple communication options at the same time) and corresponding backhaul communication infrastructure depending on the connected vehicle application requirements. Field studies conducted in this research demonstrated that the use of Het-Net broadened the range and coverage of V2V and V2I communications. The use of the application layer handoff technique to maintain seamless connectivity for CVT applications was also successfully demonstrated and can be adopted in future Het-Net supported connected vehicle applications. A long handoff time was observed when the application switches from LTE to Wi-Fi. The delay is largely due to the time required to activate the 802.11 link and the time required for the vehicle to associate with the RSU (i.e., access point). Modifying the application to implement a soft handoff where a new network is seamlessly connected before breaking from the existing network can greatly reduce (or eliminate) the interruption of network service observed by the application. However, the use of a Het-Net did not compromise the performance of the traffic data collection application as this application does not require very low latency, unlike connected vehicle safety applications. Field tests revealed that the handoff between networks in Het-Net required several seconds (i.e., higher than 200 ms required for safety applications). Thus, Het-Net could not be used to support safety applications that require communication latency less than 200 ms. However, Het-Net could provide additional/supplementary connectivity for safety applications to warn vehicles upstream to take proactive actions to avoid problem locations. To validate and establish the findings from field tests that included a limited number of connected vehicles, ns-3 simulation experiments with a larger number of connected vehicles were conducted involving a DSRC and LTE Het-Net scenario. The latency and packet delivery error trend obtained from ns-3 simulation were found to be similar to the field experiment results.  相似文献   

4.
智能交通系统是一个高科技集成系统,它综合运用各种高新技术于整个交通管理系统之中,可以系统、全面、高效地提高交通运输的安全性.文章阐述了智能交通系统在交通安全中的作用及在福州市的应用情况,指出了福州市发展智能交通的方向,以提高福州市的交通安全管理水平.  相似文献   

5.
    
Research on connected vehicle environment has been growing rapidly to investigate the effects of real-time exchange of kinetic information between vehicles and road condition information from the infrastructure through radio communication technologies. A fully connected vehicle environment can substantially reduce the latency in response caused by human perception-reaction time with the prospect of improving both safety and comfort. This study presents a dynamical model of route choice under a connected vehicle environment. We analyze the stability of headways by perturbing various factors in the microscopic traffic flow model and traffic flow dynamics in the car-following model and dynamical model of route choice. The advantage of this approach is that it complements the macroscopic traffic assignment model of route choice with microscopic elements that represent the important features of connected vehicles. The gaps between cars can be decreased and stabilized even in the presence of perturbations caused by incidents. The reduction in gaps will be helpful to optimize the traffic flow dynamics more easily with safe and stable conditions. The results show that the dynamics under the connected vehicle environment have equilibria. The approach presented in this study will be helpful to identify the important properties of a connected vehicle environment and to evaluate its benefits.  相似文献   

6.
    
In the area of active traffic management, new technologies provide opportunities to improve the use of current infrastructure. Vehicles equipped with in-car communication systems are capable of exchanging messages with the infrastructure and other vehicles. This new capability offers many opportunities for traffic management. This paper presents a novel merging assistant strategy that exploits the communication capabilities of intelligent vehicles. The proposed control requires the cooperation of equipped vehicles on the main carriageway in order to create merging gaps for on-ramp vehicles released by a traffic light. The aim is to reduce disruptions to the traffic flow created by the merging vehicles. This paper focuses on the analytical formulation of the control algorithm, and the traffic flow theories used to define the strategy. The dynamics of the gap formation derived from theoretical considerations are validated using a microscopic simulation. The validation indicates that the control strategy mostly developed from macroscopic theory well approximates microscopic traffic behaviour. The results present encouraging capabilities of the system. The size and frequency of the gaps created on the main carriageway, and the space and time required for their creation are compatible with a real deployment of the system. Finally, we summarise the results of a previous study showing that the proposed merging strategy reduces the occurrence of congestion and the number of late-merging vehicles. This innovative control strategy shows the potential of using intelligent vehicles for facilitating the merging manoeuvre through use of emerging communications technologies.  相似文献   

7.
In an Intelligent Transport System (ITS) environment, the communication component is of great importance to support interactions between vehicles and roadside infrastructure. Previous studies have focused on the physical capability and capacity of the communication technologies, but the equally important development of suitable and efficient semantic content for transmission received notably less attention. Ontology is one promising approach for context modelling in ubiquitous computing environments, and in the transport domain it can be used both for context modelling and semantic contents for vehicular communications. This paper explores the development of an ontological model implementing relative geo-semantic information messages to support vehicle-to-vehicle communications. The proposed ontology model contains classes, objects, their properties/relations as well as some functions and query templates to represent and update the information of dynamic vehicles, inter-vehicle interactions and behaviour. This model was developed through a scenario enabling the evaluation of traffic conflict resolution approaches, by implementing a set of decision-making processes for intelligent vehicles. Given the scope of the proposed ontology modelling, it shows how vehicular communications can be used to update each vehicle’s context model. This work can be easily extended for more complex interactions among vehicles and the infrastructure.  相似文献   

8.
    
Variable speed limit systems where variable message signs are used to show speed limits adjusted to the prevailing road or traffic conditions are installed on motorways in many countries. The objectives of variable speed limit system installations are often to decrease the number of accidents and to increase traffic efficiency. Currently, there is an interest in exploring the potential of cooperative intelligent transport systems including communication between vehicles and/or vehicles and the infrastructure. In this paper, we study the potential benefits of introducing infrastructure to vehicle communication, autonomous vehicle control and individualized speed limits in variable speed limit systems. We do this by proposing a cooperative variable speed limit system as an extension of an existing variable speed limit system. In the proposed system, communication between the infrastructure and the vehicles is used to transmit variable speed limits to upstream vehicles before the variable message signs become visible to the drivers. The system is evaluated by the means of microscopic traffic simulation. Traffic efficiency and environmental effects are considered in the analysis. The results of the study show benefits of the infrastructure to vehicle communication, autonomous vehicle control and individualized speed limits for variable speed limit systems in the form of lower acceleration rates and thereby harmonized traffic flow and reduced exhaust emissions.  相似文献   

9.
    
In this paper, we present results regarding the experimental validation of connected automated vehicle design. In order for a connected automated vehicle to integrate well with human-dominated traffic, we propose a class of connected cruise control algorithms with feedback structure originated from human driving behavior. We test the connected cruise controllers using real vehicles under several driving scenarios while utilizing beyond-line-of-sight motion information obtained from neighboring human-driven vehicles via vehicle-to-everything (V2X) communication. We experimentally show that the design is robust against variations in human behavior as well as changes in the topology of the communication network. We demonstrate that both safety and energy efficiency can be significantly improved for the connected automated vehicle as well as for the neighboring human-driven vehicles and that the connected automated vehicle may bring additional societal benefits by mitigating traffic waves.  相似文献   

10.
ABSTRACT

Based on the increasing demands of transportation development, the concept of an Intelligent Transportation System (ITS) has received increasing attention in both academic and industry arenas. It integrates information, communications, computers and other technologies, and applies them in the field of transportation to build an integrated system of people, roads and vehicles by utilizing advanced data communication technologies. It can establish a large, fully functioning, real-time, accurate and efficient transportation management system. Intelligent transportation systems shift the focus from road managers to road users. In order to achieve this purpose, intelligent transportation systems use advanced technology to provide drivers with convenient information to help reduce traffic congestion and to increase available road capacity. This special issue is dedicated to exploring the most recent advances in intelligent transportation systems and big data based on intelligent technology.  相似文献   

11.
In recent years, increasing attention has been drawn to the development of various applications of intelligent transportation systems (ITS), which are credited with the amelioration of traffic conditions in urban and regional environments. Advanced traveler information systems (ATIS) constitute an important element of ITS by providing potential travelers with information on the network's current performance both en-route and pre-trip. In order to tackle the complexity of such systems, derived from the difficulty of providing real-time estimations of current as well as forecasts of future traffic conditions, a series of models and algorithms have been initiated. This paper proposes the development of an integrated framework for real-time ATIS and presents its application on a large-scale network, that of Thessaloniki, Greece, concluding with a discussion on development and implementation challenges as well as on the advantages and limitations of such an effort.  相似文献   

12.
    
This paper examines the impact of having cooperative adaptive cruise control (CACC) embedded vehicles on traffic flow characteristics of a multilane highway system. The study identifies how CACC vehicles affect the dynamics of traffic flow on a complex network and reduce traffic congestion resulting from the acceleration/deceleration of the operating vehicles. An agent-based microscopic traffic simulation model (Flexible Agent-based Simulator of Traffic) is designed specifically to examine the impact of these intelligent vehicles on traffic flow. The flow rate of cars, the travel time spent, and other metrics indicating the evolution of traffic congestion throughout the lifecycle of the model are analyzed. Different CACC penetration levels are studied. The results indicate a better traffic flow performance and higher capacity in the case of CACC penetration compared to the scenario without CACC-embedded vehicles.  相似文献   

13.
    
This paper provides a two-step approach based on the stochastic differential equations (SDEs) to improve short-term prediction. In the first step of this framework, a Hull-White (HW) model is applied to obtain a baseline prediction model from previous days. Then, the extended Vasicek model (EV) is employed for modeling the difference between observations and baseline predictions (residuals) during an individual day. The parameters of this time-varying model are estimated at each sample using the residuals in a short duration of time before the time point of prediction; so it provides a real time prediction. The extracted model recovers the valuable local variation information during each day. The performance of our method in comparison with other methods improves significantly in terms of root mean squared error (RMSE), mean absolute error (MAE) and mean relative error (MRE) for real data from Tehran’s highways and the open-access PeMS database. We also demonstrate that the proposed model is appropriate for imputing the missing data in traffic dataset and it is more efficient than the probabilistic principal component analysis (PPCA) and k-Nearest neighbors (k-NN) methods.  相似文献   

14.
    
Adaptive Cruise Control systems have been developed and introduced into the consumer market for over a decade. Among these systems, fully-adaptive ones are required to adapt their behaviour not only to traffic conditions but also to drivers’ preferences and attitudes, as well as to the way such preferences change for the same driver in different driving sessions. This would ideally lead towards a system where an on-board electronic control unit can be asked by the driver to calibrate its own parameters while he/she manually drives for a few minutes (learning mode). After calibration, the control unit switches to the running mode where the learned driving style is applied. The learning mode can be activated by any driver of the car, for any driving session and each time he/she wishes to change the current driving behaviour of the cruise control system.The modelling framework which we propose to implement comprises four layers (sampler, profiler, tutor, performer). The sampler is responsible for human likeness and can be calibrated while in learning mode. Then, while in running mode, it works together with the other modelling layers to implement the logic. This paper presents the overall framework, with particular emphasis on the sampler and the profiler that are explained in full mathematical detail. Specification and calibration of the proposed framework are supported by the observed data, collected by means of an instrumented vehicle. The data are also used to assess the proposed framework, confirming human-like and fully-adaptive characteristics.  相似文献   

15.
This paper conducts a comparative discrete choice analysis to estimate consumers’ willingness to pay (WTP) for electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) on the basis of the same stated preference survey carried out in the US and Japan in 2012. We also carry out a comparative analysis across four US states. We find that on average US consumers are more sensitive to fuel cost reductions and alternative fuel station availability than are Japanese consumers. With regard to the comparative analysis across the four US states, consumers’ WTP for a fuel cost reduction in California is considerably greater than in the other three states. We use the estimates obtained in the discrete choice analysis to examine the EV/PHEV market shares under several scenarios. In a base case scenario with relatively realistic attribute levels, conventional gasoline vehicles still dominate both in the US and Japan. However, in an innovation scenario with a significant purchase price reduction, we observe a high penetration of alternative fuel vehicles both in the US and Japan. We illustrate the potential use of a discrete choice analysis for forward-looking policy analysis, with the future opportunity to compare its predictions against actual revealed choices. In this case, increased purchase price subsidies are likely to have a significant impact on the market shares of alternative fuel vehicles.  相似文献   

16.
This paper develops a comprehensive approach to the definition of transportation analysis zones (TAZ), and therein, presents a new methodology and algorithm for the definition of TAZ embedded in geographic information systems software, improves the base algorithm with several local algorithms, and comprehensively analyses the obtained results. The results obtained are then compared to these presently used in the transportation analysis process of the Lisbon Metropolitan Area. The proposed algorithm presents a new methodology for TAZ design based on a smoothed density surface of geocoded travel demand data. The algorithm aims to minimise the loss of information when moving from a continuous representation of the origin and destination of each trip to their discrete representations through zones, and focuses on the trade-off between the statistical precision, geographical error, and the percentage of intra-zonal trips of the resulting OD matrix. The results for the Lisbon Metropolitan Area case study suggest a significant improvement in OD matrix estimates compared to current transportation analysis practises based on administrative units.
Elisabete A. SilvaEmail:

Luis M. Martínez   is a Civil Engineer from the Instituto Superior Técnico, Technical University of Lisbon since 2004. After finishing his degree, he started his work as researcher in the CESUR (Civil Engineering & Architecture Department—Instituto Superior Técnico) where he has been working since. In 2006 he completed his Master Thesis at Instituto Superior Técnico on Traffic Analysis Zones modeling and started his PhD studies on the theme: Metropolitan Transportation Systems Financing Using the Value Capture Concept. José Manuel Viegas   is Full Professor of Transportation at the Civil Engineering & Architecture Department of the Instituto Superior Técnico, Technical University of Lisbon. He has worked extensively in Modeling, Innovation and Policy in several types of Transport Systems. He was founder and first Director General of Transportnet, a group of eight leading European Universities with Advanced Studies in Transportation, and currently leads the Portuguese side of the Transportation Systems area in the MIT—Portugal program. Elisabete A. Silva   is at the University of Cambridge (University Lecturer in Planning at the Department of Land Economy and a Fellow of Robinson College). With more than 100 contributions in peer review journals, books/books chapters, conference proceedings, and a research track record of approximately 16 years, (both at the public and private sector), her research interests are centred on the application of new technologies to spatial planning in particular city and metropolitan dynamic modelling through time.  相似文献   

17.
    
Car following models have been studied with many diverse approaches for decades. Nowadays, technological advances have significantly improved our traffic data collection capabilities. Conventional car following models rely on mathematical formulas and are derived from traffic flow theory; a property that often makes them more restrictive. On the other hand, data-driven approaches are more flexible and allow the incorporation of additional information to the model; however, they may not provide as much insight into traffic flow theory as the traditional models. In this research, an innovative methodological framework based on a data-driven approach is proposed for the estimation of car-following models, suitable for incorporation into microscopic traffic simulation models. An existing technique, i.e. locally weighted regression (loess), is defined through an optimization problem and is employed in a novel way. The proposed methodology is demonstrated using data collected from a sequence of instrumented vehicles in Naples, Italy. Gipps’ model, one of the most extensively used car-following models, is calibrated against the same data and used as a reference benchmark. Optimization issues are raised in both cases. The obtained results suggest that data-driven car-following models could be a promising research direction.  相似文献   

18.
    
This paper examines the possible placement of Energy Storage Systems (ESS) on an urban tram system for the purpose of exploring potential increases in operating efficiency through the examination of different locations for battery energy storage. Further, the paper suggests the utilisation of Electric Vehicle (EV) batteries at existing Park and Ride (P&R) sites as a means of achieving additional energy storage at these locations. The study achieves this through MATLAB modelling utilising captured GPS data and publically available information. This study examines the scenario of uni-directional substations with no interconnection between the overhead catenary for both directions of travel, and discusses the trade-offs between ESS size and required current limits.The results show the savings in both energy and basic CO2 emissions alongside the discussion of Return on Investment (RoI) that can be achieved through the potential installation of ESS at identified ideal locations along the tram network. Moreover, this may be extended to the use of EVs as stationary ESS sited at the existing P&R facilities. Further, the model may also be used to inform future infrastructure upgrades and potential improvements to air quality within urban environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号