首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This driving simulator study was the second of two studies investigating the most effective and acceptable in-vehicle system for the provision of guidance on fuel efficient accelerator usage. Three eco-driving interfaces were selected for test (a second-order display visual display with auditory alerts and two haptic accelerator pedal systems) following a pilot study of 12 different interfaces. These systems were tested in a range of eco-driving scenarios involving acceleration, deceleration and speed maintenance, and assessed through their effects on fuel economy, vehicle control, distraction, and driver subjective feedback. The results suggest that a haptic accelerator pedal system is most effective for preventing over-acceleration, whilst minimal differences were observed between systems in terms of the effect of the assistance provided to prevent under-acceleration. The visual–auditory interface lowered the time spent looking towards the road, indicating a potential negative impact on driver safety from using this modality to provide continuous green driving support. Subjective results were consistent with the objective findings, with haptic pedal systems creating lower perceived workload than a visual–auditory interface. Driver acceptability ratings suggested a slight favouring of a haptic-force system for its usefulness, whereas the more subtle haptic-stiffness system was judged more acceptable to use. These findings offer suggestions for the design of a user-friendly, eco-driving device that can help drivers improve their fuel economy, specifically through the provision of real-time guidance on the manipulation of the accelerator pedal position.  相似文献   

2.
The aim of the study was to investigate the perceived usefulness of various types of in-vehicle feedback and advice on fuel efficient driving. Twenty-four professional truck drivers participated in a driving simulator study. Two eco-driving support systems were included in the experiment: one that provided continuous information and one that provided intermittent information. After the simulator session, the participants were interviewed about their experiences of the various constituents of the systems. In general, the participants had a positive attitude towards eco-driving support systems and behavioural data indicated that they tended to comply with the advice given. However, different drivers had very different preferences with respect to what type of information they found useful. The majority of the participants preferred simple and clear information. The eco-driving constituents that were rated as most useful were advice on gas pedal pressure, speed guidance, feedback on manoeuvres, fuel consumption information and simple statistics. It is concluded that customisable user interfaces are recommended for eco-driving support systems for trucks.  相似文献   

3.
Whilst driving is inherently a safety–critical task, awareness of fuel-efficient driving techniques has gained popularity in both the public and commercial domains. Green driving, whether motivated by financial or environmental savings, has the potential to reduce the production of greenhouse gases by a significant amount. This paper focusses on the interaction between the driver and their vehicle – what type of eco-driving information is easy to use and learn whilst not compromising safety. A simulator study evaluated both visual and haptic eco-driving feedback systems in the context of hill driving. The ability of drivers to accurately follow the advice, as well as their propensity to prioritise it over safe driving was investigated. We found that any type of eco-driving advice improved performance and whilst continuous real-time visual feedback proved to be the most effective, this modality obviously reduces attention to the forward view and increases subjective workload. On the other hand, the haptic force system had little effect on reported workload, but was less effective that the visual system. A compromise may be a hybrid system that adapts to drivers’ performance on an on-going basis.  相似文献   

4.
Conventional road transport has negative impact on the environment. Stimulating eco-driving through feedback to the driver about his/her energy conservation performance has the potential to reduce CO2 emissions and promote fuel cost savings. Not all drivers respond well to the same type of feedback. Research has shown that different drivers are attracted to different types of information and feedback. The goal of this paper is to explore which different driver segments with specific psychographic characteristics can be distinguished, how these characteristics can be used in the development of an ecodriving support system and whether tailoring eco-driving feedback technology to these different driver segments will lead to increased acceptance and thus effectiveness of the eco feedback technology. The driver segments are based on the value orientation theory and learning orientation theory. Different possibilities for feedback were tested in an exploratory study in a driving simulator. An explorative study was selected since the choice of the display (how and when the information is presented) may have a strong impact on the results. This makes testing of the selected driver segments very difficult. The results of the study nevertheless suggest that adapting the display to a driver segment showed an increase in acceptance in certain cases. The results showed small differences for ratings on acceptation, ease of use, favouritism and a lower general rating between matched (e.g., learning display with learning oriented drivers) and mismatched displays (e.g., learning display with performance oriented drivers). Using a display that gives historical feedback and incorporates learning elements suggested a non-verifiable increase in acceptance for learning oriented drivers. However historical feedback and learning elements may be less effective for performance oriented drivers, who may need comparative feedback and game elements to improve energy conserving driving behaviour.  相似文献   

5.
In this paper the long-term impact of an eco-driving training course is evaluated by monitoring driving behavior and fuel consumption for several months before and after the course. Cars were equipped with an on-board logging device that records the position and speed of the vehicle using GPS tracking as well as real time as electronic engine data extracted from the controller area network. The data includes mileage, number of revolutions per minute, position of the accelerator pedal, and instantaneous fuel consumption. It was gathered over a period of 10 months for 10 drivers during real-life conditions thus enabling an individual drive style analysis. The average fuel consumption four months after the course fell by 5.8%. Most drivers showed an immediate improvement in fuel consumption that was stable over time, but some tended to fall back into their original driving habits.  相似文献   

6.
A field trial is used to investigate effects of two programmes aimed at encouraging bus drivers to develop and maintain ecological driving behaviour. Drivers on one bus line were divided into three groups, one received feedback from an in-vehicle system, the second received the same feedback coupled with personal training sessions, and the third acting as a control. A 6.8% fuel saving and large decreases in instances of harsh deceleration and speeding were found, but with no difference in the effect of the two eco-driving strategies. The drivers reported perceived gains in theoretical knowledge of eco-driving, but found it more difficult to put that knowledge into practice. Several contextual factors were found to limit drivers’ to eco-driving, most noticeably shaped by their work tasks, but also the commitment of the company where they were employed.  相似文献   

7.
The drive to reduce fuel consumption and greenhouse gas emissions is one shared by both businesses and governments. Although many businesses in the European Union undertake interventions, such as driver training, there is relatively little research which has tested the efficacy of this approach and that which does exist has methodological limitations. One emerging technology employed to deliver eco-driving training is driver training using a simulator. The present study investigated whether bus drivers trained in eco-driving techniques were able to implement this learning in a simulator and whether this training would also transfer into the workplace. A total of 29 bus drivers attended an all-day eco-driving course and their driving was tested using a simulator both before and after the course. A further 18 bus drivers comprised the control group, and they attended first aid courses as well as completing the same simulator drives (before-after training). The bus drivers who were given the eco-driving training significantly improved fuel economy figures in the simulator, while there was no change in fuel economy for the control group. Actual fuel economy figures were also provided by the bus companies immediately before the training, immediately after the training and six months after the training. As expected there were no significant changes in fuel economy for the control group. However, fuel economy for the treatment group improved significantly immediately after the eco-driving training (11.6%) and this improvement was even larger six months after the training (16.9%). This study shows that simulator-based training in eco-driving techniques has the potential to significantly reduce fuel consumption and greenhouse gas emissions in the road transport sector.  相似文献   

8.
This research developed an eco-driving feedback system based on a driving simulator to support eco-driving training. This support system could provide both dynamic and static feedback to improve drivers’ eco-driving behavior. In the process of driving, drivers could get voice prompts (e.g., please avoid accelerating rapidly) once non-eco-driving behavior appeared, and also could see the real-time CO2 emissions curves. After driving, drivers could receive an eco-driving evaluation report including their fuel consumption rank, potential of fuel saving and driving advice corresponding to their driving behavior. In this support system, five items of non-eco-driving behavior (i.e., quick accelerate, rapid decelerate, engine revolutions at a high level, too fast or unstable speed on freeways and idling for a longer time) were defined and could be detected. To validate this support system’s effectiveness in reducing fuel consumption and emissions, 22 participants were recruited and three driving tests were conducted, first without using the support system, then static feedback and then dynamic feedback utilized respectively. A reduction of 5.37% for CO2 emissions and 5.45% for fuel consumption was obtained. The results indicated that the developed eco-driving support system was an effective training tool to improve drivers’ eco-driving behavior in reducing emissions and fuel consumption.  相似文献   

9.
This paper reports the findings of an eco-driving trial that was designed enable users to make pre-trip and on-route decisions when driving as to the optimal route to take. The basis of this paper will be to estimate how efficiently drivers are performing in relation to fuel consumption per kilometres (km). The analysis uses details on the vehicle specification, in terms of fuel efficiency, and relates this to the distance travelled to provide the user with information on the efficiency per km travelled. Eco-driving involves the training of individuals to change their driving patterns and to adapt to driving conditions. The results of the study show that eco-driving feedback is a powerful tool and how it can be used to reduce emissions.  相似文献   

10.
The use of mobile phones while driving—one of the most common driver distractions—has been a significant research interest during the most recent decade. While there has been a considerable amount research and excellent reviews on how mobile phone distractions influence various aspects of driving performance, the mechanisms by which the interactions with mobile phone affect driver performance is relatively unexamined. As such, the aim of this study is to examine the mechanisms involved with mobile phone distractions such as conversing, texting, and reading and the driving task, and subsequent outcomes. A novel human-machine framework is proposed to isolate the components and various interactions associated with mobile phone distracted driving. The proposed framework specifies the impacts of mobile phone distraction as an inter-related system of outcomes such as speed selection, lane deviations and crashes; human-car controls such as steering control and brake pedal use and human-environment interactions such as visual scanning and navigation. Eleven literature-review/meta-analyses papers and 62 recent research articles from 2005 to 2015 are critically reviewed and synthesised following a systematic classification scheme derived from the human-machine system framework. The analysis shows that while many studies have attempted to measure system outcomes or driving performance, research on how drivers interactively manage in-vehicle secondary tasks and adapt their driving behaviour while distracted is scant. A systematic approach may bolster efforts to examine comprehensively the performance of distracted drivers and their impact over the transportation system by considering all system components and interactions of drivers with mobile phones and vehicles. The proposed human-machine framework not only contributes to the literature on mobile phone distraction and safety, but also assists in identifying the research needs and promising strategies for mitigating mobile phone-related safety issues. Technology based countermeasures that can provide real-time feedback or alerts to drivers based on eye/head movements in conjunction with vehicle dynamics should be an important research direction.  相似文献   

11.
Previous research has shown that electric vehicle (EV) users could behave differently compared to internal combustion engine vehicle (ICEV) drivers due to their consciousness or practices of eco-driving, but very limited research has fully investigated this assumption. This research explores this topic through investigating EV drivers’ eco-driving behaviors and motivations. We first conducted a questionnaire survey on EV drivers’ driving behavior and some hypothetical decisions of their driving. It indicates various characteristics between EV and ICEV commuters, including self-reported daily driving habits, preferences of route choices, tradeoff between travel time and energy saving, and adoption of in-vehicle display (IVD) technologies. Then, through statistical analysis with Fisher’s exact test and Mann-Whitney U test, this research reveals that, compared to ICEV drivers, EV drivers possess significantly calmer driving maneuvers and more fuel-efficient driving habits such as trip chaining. The survey data also show that EV drivers are much more willing to save energy in compensation of travel time. Furthermore, the survey data indicate that EV drivers are more willing to adopt eco-friendly IVD technologies. All these findings are expected to improve the understanding of some unique behavior found in EV drivers.  相似文献   

12.
Recent advances in technology are changing the way how everyday activities are performed. Technologies in the traffic domain provide diverse instruments of gathering and analysing data for more fuel-efficient, safe, and convenient travelling for both drivers and passengers. In this article, we propose a reference architecture for a context-aware driving assistant system. Moreover, we exemplify this architecture with a real prototype of a driving assistance system called Driving coach. This prototype collects, fuses and analyses diverse information, like digital map, weather, traffic situation, as well as vehicle information to provide drivers in-depth information regarding their previous trip along with personalised hints to improve their fuel-efficient driving in the future. The Driving coach system monitors its own performance, as well as driver feedback to correct itself to serve the driver more appropriately.  相似文献   

13.
In October 2002 the first ISA-trial in Belgium was started in Ghent. Thirty-four cars and three buses were equipped with the “active accelerator pedal”. In this system a resistance in the accelerator is activated when the driver attempts to exceed the speed limit. If necessary, the driver can overrule the system. The main research goals of the trial in Ghent were to evaluate the effects of ISA on speed-change, traffic safety, drivers’ attitude, behaviour and drivers’ acceptance. To study these effects of the ISA-system both surveys and logged speed data were analyzed. In the surveys drivers noticed that the pedal assisted them well in upholding the speed limits and that the system increased driving comfort. Most important drawbacks were technical issues. Data analysis shows a reduction in the amount of speeding due to the ISA-system. There is however still a large remaining percentage of distance speeding, especially in low speed zones. Differences between drivers are large. For some drivers speeding even increases despite activation of the system. For less frequent speeders average driving speed almost always increases and for more frequent speeders average speed tends to decrease. With the system, less frequent speeders tend to accelerate faster towards the speed limit and drive exactly at the speed limit instead of safely below, which causes average speeds to go up.  相似文献   

14.
This study evaluates whether the use of an acceleration advisor leads to fuel savings, to determine the change in traffic-related emissions and to analyse changes in driving patterns on various routes. The acceleration advisor provides advice to drivers through resistance in the accelerator pedal when they try to accelerate rapidly. In a test carried out in Southern Sweden, the acceleration advisor was installed in four postal delivery vehicles. The driving pattern parameters show that strong acceleration was significantly reduced, which indicated that the drivers had complied with the advisor. On two of the three routes, the acceleration advisor had a positive effect on emissions. In general, no significant reduction in fuel consumption was observed when driving with the acceleration advisor activated.  相似文献   

15.
This study evaluates effectiveness of driver education teaching greater fuel efficiency (Eco-Driving) in a real world setting in Australia. The driving behaviour, measured in fuel use (litres per 100 km of travel) of a sample of 1056 private drivers was monitored over seven months. 853 drivers received education in eco-driving techniques and 203 were monitored as a control group. A simple experimental design was applied comparing the pre and post training fuel use of the treated sample compared to a control sample. This study found the driver education led to a statistically significant reduction in fuel use of 4.6% or 0.51 litres per 100 km compared to the control group.  相似文献   

16.
Every year, bus companies consume millions of litres of fuel, and their fuel costs often exceed millions of US dollars. These companies have an obvious interest in reducing their fuel consumption. One way to encourage drivers to engage in eco-driving behaviours, as well as their related beliefs, is to use a monetary reward system. The aim of this study was to explore the incentive effects of such a reward system to encourage better driving behaviours among bus drivers. This study collected fuel-efficiency data before and after the implementation of a reward system. Furthermore, to study the effects that the system had on driver behaviours, this study adopted the theory of Motivation–Opportunity–Ability (MOA) to construct the regression model. The results for the average fuel consumption efficiency for the buses before and after the reward system was introduced showed an improvement of more than 10% and thus a reduction in carbon emissions.  相似文献   

17.
Economical, ecological and safe driving (eco-driving) is aimed at reducing fuel consumption, greenhouse gas emissions and accidents. Eco-driving is concerned about driving in a way compatible with modern engine technology: smart, smooth and safe techniques that lead to potential fuel savings of 10–15%. The Centre for Renewable Energy Sources of Greece conducted an eco-driving pilot study in collaboration with the Organization of Urban Transportation of Athens, and the Thermo-Bus Company to assess the effects of changing urban bus drivers’ driving style.  相似文献   

18.
This research identifies key variables that influence fuel consumption that might be improved through eco-driving training programs under three circumstances that have been scarcely studied before: (a) heavy- and medium-duty truck fleets, (b) long-distance freight transport, and (c) the Latin American region. Based on statistical analyses that include multivariate regression of operational variables on fuel consumption, the impacts of an eco-driving training campaign were measured by comparing ex ante and ex post data. Operational variables are grouped into driving errors, trip conditions, driver behavior, driver profile, and vehicle attributes.The methodology is applied in a freight fleet with nationwide transport operations located in Colombia, where the steepness of its roads plays an important role in fuel consumption. The fleet, composed of 18 trucks, is equipped with state-of-the-art real-time data logger systems. During four months, 517 trips traveling a total distance of 292,512 km and carrying a total of 10,034 tons were analyzed.The results show a baseline average fuel consumption (FC) of 1.716 liters per ton-100 km. A different logistics performance indicator, which measures FC in liters per ton transported each 100 km, shows an average of 3.115. After the eco-driving campaign, reductions of 6.8% and 5.5% were obtained. Drivers’ experience, driving errors, average speed, and weight-capacity ratio, among others, were found to be highly relevant to FC. In particular, driving errors such as acceleration, braking and speed excesses are the most sensitive to eco-driving training, showing reductions of up to 96% on the average number of events per trip.  相似文献   

19.
Over the last decade, transport companies have tried to reduce fuel consumption using efficient driving programs. In them, motorists have to apply different specific techniques while driving. Thus, to succeed in this learning process there are two key elements: the knowledge of efficient driving techniques and the drivers’ motivation. The latter is a human factor which companies usually bring about by using reward systems. In this case, having a fair evaluation mechanism is the keystone to determine goal fulfilment. This paper presents a complete methodology to evaluate driving efficiency of drivers in professional fleets. The evaluation methodology is based on a continuous process which determines the maturity of the motorist in different aspects, such as the efficiency during the start of the vehicle movement, during motion or in stop events. In addition, the evaluation methodology includes an early-classification method to establish the initial efficiency level of the individual drivers which permits an adaptation of the learning process from the beginning. A dashboard has also been developed to support the evaluation methodology. 880 professional drivers have been evaluated with this methodology. Results show that the evaluation methodology identifies drivers’ weaknesses, to be improved in successive iterations of the learning process.  相似文献   

20.
The advancements in communication and sensing technologies can be exploited to assist the drivers in making better decisions. In this paper, we consider the design of a real-time cooperative eco-driving strategy for a group of vehicles with mixed automated vehicles (AVs) and human-driven vehicles (HVs). The lead vehicles in the platoon can receive the signal phase and timing information via vehicle-to-infrastructure (V2I) communication and the traffic states of both the preceding vehicle and current platoon via vehicle-to-vehicle (V2V) communication. We propose a receding horizon model predictive control (MPC) method to minimise the fuel consumption for platoons and drive the platoons to pass the intersection on a green phase. The method is then extended to dynamic platoon splitting and merging rules for cooperation among AVs and HVs in response to the high variation in urban traffic flow. Extensive simulation tests are also conducted to demonstrate the performance of the model in various conditions in the mixed traffic flow and different penetration rates of AVs. Our model shows that the cooperation between AVs and HVs can further smooth out the trajectory of the latter and reduce the fuel consumption of the entire traffic system, especially for the low penetration of AVs. It is noteworthy that the proposed model does not compromise the traffic efficiency and the driving comfort while achieving the eco-driving strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号