共查询到20条相似文献,搜索用时 15 毫秒
1.
One-way station-based carsharing systems allow users to return a rented car to any designated station, which could be different from the origin station. Existing research has been mainly focused on the vehicle relocation problem to deal with the travel demand fluctuation over time and demand imbalance in space. However, the strategic planning of the stations’ location and their capacity for one-way carsharing systems has not been well studied yet, especially when considering vehicle relocations simultaneously. This paper presents a Mixed-integer Non-linear Programming (MINLP) model to solve the carsharing station location and capacity problem with vehicle relocations. This entails considering several important components which are for the first time integrated in the same model. Firstly, relocation operations and corresponding relocation costs are taken into consideration to address the imbalance between trip requests and vehicle availability. Secondly, the flexible travel demand at various time steps is taken as the input to the model avoiding deterministic requests. Thirdly, a logit model is constructed to represent the non-linear demand rate by using the ratio of carsharing utility and private car utility. To solve the MINLP model, a customized gradient algorithm is proposed. The application to the SIP network in Suzhou, China, demonstrates that the algorithm can solve a real world large scale problem in reasonable time. The results identify the pricing and parking space rental costs as the key factors influencing the profitability of carsharing operators. Also, the carsharing station location and fleet size impact the vehicle relocation and carsharing patronage. 相似文献
2.
With the increasing fuel prices and the pressure towards greener modes of transportation, ridesharing has emerged as an alternative to private car ownership and public transportation. In this paper, we focus on a common destination ridesharing system which is of interest in large organizations such as companies and government offices. Particularly, such organizations are looking at using company owned vehicles to offer a ridesharing service by which employees carpool to work thus leading to several benefits that include decreasing pressure on on-campus parking spaces, lowering localized on-campus congestion, in addition to offering a greener transportation mode while lowering transportation costs for employees. Based on discussions with our industry partners, optimizing the distribution of limited number of company vehicles while insuring robustness against unlikely vehicle unavailability is of critical importance. Thus in this paper, we present a stochastic mixed integer programming model to optimize the allocation of shared vehicles to employees while taking into account the unforeseen event of vehicle unavailability which would require some participants to take own vehicles or rerouting of existing vehicles. Since solving the proposed model to optimality is computationally challenging for problems of large sizes, we also propose a heuristic that is capable of finding good quality solutions in limited computational time. The proposed model and heuristic are tested on several instances of varying sizes showing the computational performance. Finally, a test case based on the city of Rome, Italy is presented and insights related to vehicle distribution and travel time savings are discussed. 相似文献
3.
The Time-Dependent Pollution-Routing Problem (TDPRP) consists of routing a fleet of vehicles in order to serve a set of customers and determining the speeds on each leg of the routes. The cost function includes emissions and driver costs, taking into account traffic congestion which, at peak periods, significantly restricts vehicle speeds and increases emissions. We describe an integer linear programming formulation of the TDPRP and provide illustrative examples to motivate the problem and give insights about the tradeoffs it involves. We also provide an analytical characterization of the optimal solutions for a single-arc version of the problem, identifying conditions under which it is optimal to wait idly at certain locations in order to avoid congestion and to reduce the cost of emissions. Building on these analytical results we describe a novel departure time and speed optimization algorithm for the cases when the route is fixed. Finally, using benchmark instances, we present results on the computational performance of the proposed formulation and on the speed optimization procedure. 相似文献
4.
Long taxiing times at large airports lead to fuel wastage and dissatisfied passengers. This paper investigates the 4D taxi scheduling problem in airports to minimize the taxiing time. We propose an iterative two-stage scheduling strategy. In the first stage, all aircrafts in a current schedule period are assigned initial 4D routes. In the second stage, landing aircrafts that are unavailable to fulfil their initially assigned routes are rescheduled using a shortest path algorithm based approach. In this paper, the simplified model used in most existing literature, that depicts a runway as having a single entrance and a single exit or even sets only one point to represent both of them has been discarded. Instead, we model the fact that a runway has multiple entrance and exit points and use an emerging concept—Runway Exit Availability (REA)—to measure the probability of clearing a runway from a specific exit during a specific time interval so that the taxiing scheduling model can be much higher approximation to the practical operation. An integer programming (IP) model factoring REA is proposed for assigning 4D taxiing routes in the first stage. The IP model covers most practical constraints faced in airport taxiing procedures, such as the rear-end/head-on conflict constraint, runway-crossing constraint, take-off/landing separation constraint, and taxi-out constraint. Besides, flight holding patterns at intersections are much more realistically modelled. Furthermore, to accelerate the solving process of the IP model, we have refined the formulation using several tricks. Simulation results by proposed scheduling approach for operations at the Beijing Capital International Airport (PEK) for an entire day demonstrate a surprising taxiing time saving against the empirical data and simulation results based on a strategy similar to what being used now days while showing an acceptable running time of our approach, which supports that our approach may help in real operation in the future. 相似文献
5.
The traditional distribution planning problem in a supply chain has often been studied mainly with a focus on economic benefits. The growing concern about the effects of anthropogenic pollutions has forced researchers and supply chain practitioners to address the socio-environmental concerns. This research study focuses on incorporating the environmental impact on route design problem. In this work, the aim is to integrate both the objectives, namely economic cost and emission cost reduction for a capacitated multi-depot green vehicle routing problem. The proposed models are a significant contribution to the field of research in green vehicle routing problem at the operational level. The formulated integer linear programming model is solved for a set of small scale instances using LINGO solver. A computationally efficient Ant Colony Optimization (ACO) based meta-heuristic is developed for solving both small scale and large scale problem instances in reasonable amount of time. For solving large scale instances, the performance of the proposed ACO based meta-heuristic is improved by integrating it with a variable neighbourhood search. 相似文献
6.
Fighter aircraft protect specific facilities on alert in the air by patrolling expectation zones. These zones are located in the direction from which enemy aircraft attacks are expected; fighter formations are sent from them to intercept enemy aircraft. The problem considered in this paper is to determine the optimum assignment of fighter plane formations to enemy formations. The proposed solution is based on fuzzy logic and integer linear programming. A numerical example is given to illustrate the application possibilities of the proposed solution. 相似文献
7.
8.
Carsharing is an innovative travel alternative that has recently experienced considerable growth and become part of sustainable transportation initiatives. Although carsharing is becoming increasingly a popular alternative transportation mode in North America, it is still an under‐researched area. Current research is aimed at better understanding of the behavior of carsharing users. For every member, a two‐stage approach microsimulates the probability of being active in any month using a binary probit model and given that a particular member is active during a month, the probability of that member using the service multiple times using a random utility‐based model. The model is estimated using empirical data from one of the largest carsharing companies in North America. The model estimates reveal that the activity persistency of members is positively linked to previous behaviors for up to 4 months, and that the influence of previous months weakens over time. It also shows that some attributes of the traveler (gender, age, and language spoken at home) impact his or her behaviors. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
9.
Mapping evacuation risk on transportation networks using a spatial optimization model 总被引:2,自引:0,他引:2
The focus of this paper is on the development of a methodology to identify network and demographic characteristics on real transportation networks which may lead to significant problems in evacuation during some extreme event, like a wildfire or hazardous material spill. We present an optimization model, called the critical cluster model, that can be used to identify small areas or neighborhoods which have high ratios of population to exit capacity. Although this model in its simplest form is a nonlinear, constrained optimization problem, a special integer-linear programming equivalent can be formulated. Special contiguity constraints are needed to keep identified clusters spatially connected. We present details on how this model can be solved optimally as well as discuss computational experience for several example transportation networks. We describe how this model can be integrated within a GIS system to produce maps of evacuation risk or vulnerability. This model is now being utilized in several research projects, in Europe and the US. 相似文献
10.
Based on the analysis of the railway system in the Paris region in France, this paper presents a rescheduling problem in which stops on train lines can be skipped and services are retimed to recover when limited disturbances occur. Indeed, in such mass transit systems, minor disturbances tend to propagate and generate larger delays through the shared use of resources, if no action is quickly taken. An integrated Integer Linear Programming model is presented whose objective function minimizes both the recovery time and the waiting time of passengers. Additional criteria related to the weighted number of train stops that are skipped are included in the objective function. Rolling-stock constraints are also taken into account to propose a feasible plan. Computational experiments on real data are conducted to show the impact of rescheduling decisions depending on key parameters such as the duration of the disturbances and the minimal turning time between trains. The trade-off between the different criteria in the objective function is also illustrated and discussed. 相似文献
11.
The container shipping industry faces many interrelated challenges and opportunities, as its role in the global trading system has become increasingly important over the last decades. On the one side, collaboration between port terminals and shipping liners can lead to costs savings and help achieve a sustainable supply chain, and on the other side, the optimization of operations and sailing times leads to reductions in bunker consumption and, thus, to fuel cost and air emissions reductions. To that effect, there is an increasing need to address the integration opportunities and environmental issues related to container shipping through optimization. This paper focuses on the well known Berth Allocation Problem (BAP), an optimization problem assigning berthing times and positions to vessels in container terminals. We introduce a novel mathematical formulation that extends the classical BAP to cover multiple ports in a shipping network under the assumption of strong cooperation between shipping lines and terminals. Speed is optimized on all sailing legs between ports, demonstrating the effect of speed optimization in reducing the total time of the operation, as well as total fuel consumption and emissions. Furthermore, the model implementation shows that an accurate speed discretization can result in far better economic and environmental results. 相似文献
12.
This paper compares different optimization strategies for the minimization of flight and passenger delays at two levels: pre-tactical, with on-ground delay at origin, and tactical, with airborne delay close to the destination airport. The optimization model is based on the ground holding problem and uses various cost functions. The scenario considered takes place in a busy European airport and includes realistic values of traffic. A passenger assignment with connections at the hub is modeled. Statistical models are used for passenger and connecting passenger allocation, minimum time required for turnaround and tactical noise; whereas uncertainty is also introduced in the model for tactical noise. Performance of the various optimization processes is presented and compared to ration by schedule results. 相似文献
13.
Once limited to the military domain, unmanned aerial vehicles are now poised to gain widespread adoption in the commercial sector. One such application is to deploy these aircraft, also known as drones, for last-mile delivery in logistics operations. While significant research efforts are underway to improve the technology required to enable delivery by drone, less attention has been focused on the operational challenges associated with leveraging this technology. This paper provides two mathematical programming models aimed at optimal routing and scheduling of unmanned aircraft, and delivery trucks, in this new paradigm of parcel delivery. In particular, a unique variant of the classical vehicle routing problem is introduced, motivated by a scenario in which an unmanned aerial vehicle works in collaboration with a traditional delivery truck to distribute parcels. We present mixed integer linear programming formulations for two delivery-by-drone problems, along with two simple, yet effective, heuristic solution approaches to solve problems of practical size. Solutions to these problems will facilitate the adoption of unmanned aircraft for last-mile delivery. Such a delivery system is expected to provide faster receipt of customer orders at less cost to the distributor and with reduced environmental impacts. A numerical analysis demonstrates the effectiveness of the heuristics and investigates the tradeoffs between using drones with faster flight speeds versus longer endurance. 相似文献
14.
ManWo Ng Zhanmin Zhang S. Travis Waller 《Transportation Research Part C: Emerging Technologies》2011,19(6):1326-1338
Currently there is a true dichotomy in the pavement maintenance and rehabilitation (M&R) literature. On the one hand, there are integer programming-based models that assume that parameters are deterministically known. On the other extreme, there are stochastic models, with the most popular class being based on the theory of Markov decision processes that are able to account for various sources of uncertainties observed in the real-world. In this paper, we present an integer programming-based alternative to account for these uncertainties. A critical feature of the proposed models is that they provide – a priori – probabilistic guarantees that the prescribed M&R decisions would result in pavement condition scores that are above their critical service levels, using minimal assumptions regarding the sources of uncertainty. By construction of the models, we can easily determine the additional budget requirements when additional sources of uncertainty are considered, starting from a fully deterministic model. We have coined this additional budget requirement the price of uncertainty to distinguish from previous related work where additional budget requirements were studied due to parameter uncertainties in stochastic models. A numerical case study presents valuable insights into the price of uncertainty and shows that it can be large. 相似文献
15.
Carsharing has become an important addition to existing mobility services over the last years. Today, several different systems are operating in many big cities. For an efficient and economic operation of any carsharing system, the identification of customer demand is essential. This demand is investigated within the presented research by analyzing booking data of a German free-floating carsharing system.The objectives of this paper are to describe carsharing usage and to identify factors that have an influence on the demand for carsharing. Therefore, the booking data are analyzed for temporal aspects, showing recurring patterns of varying lengths. The spatial distribution of bookings is investigated using a geographic information system and indicates a relationship between city structure and areas with high demand for carsharing. The temporal and spatial facets are then combined by applying a cluster analysis to identify groups of days with similar spatial booking patterns and show asymmetries in the spatiotemporal distribution of vehicle supply and demand.Influences on demand can be either short-term or long-term. The paper shows that changes in the weather conditions are a short-term influence as users of free-floating carsharing react to those. Furthermore, the application of a linear regression analysis reveals that socio-demographic data are suitable for making long-term demand predictions since booking numbers show quite a strong correlation with socio-demography, even in a simple model. 相似文献
16.
文章介绍了国内外单向交通的发展概况及实施条件,阐述了城市区域性单向交通设置的优势与劣势,并结合具体案例,分析了单向交通系统设置中的问题与对策,提出了实行单向交通的相关建议。 相似文献
18.
Reza Taromi Michael DuRoss Bintong Chen Ardeshir Faghri Mingxin Li Tracy DeLiberty 《运输规划与技术》2015,38(3):277-304
This paper develops a multiobjective optimization model to consider transportation impacts of the future development of land. The output of the model is the best location and type of land use that has minimal negative transportation effects and uses the maximum available public transportation infrastructure. It provides tools for both planners and transportation engineers and enables them to consider different scenarios of possible policies and land development. Since multiple objectives and their nonlinear structures are considered, the model is solved using mixed integer nonlinear programming. The final results are shown in both tabular and graphical format. The effectiveness of the model is applied to the northern part of New Castle County, Delaware. The results show that the model successfully finds the best locations for both residential and commercial land uses in order to meet several criteria discussed in the paper. 相似文献
19.
The management of products’ end-of-life and the recovery of used products has gained significant importance in recent years. In this paper, we address the carbon footprint-based problem that arises in a closed-loop supply chain where returned products are collected from customers. These returned products can either be disposed of or be remanufactured to be resold as new ones. Given this environment, an optimization model for a closed-loop supply chain (CLSC) in which carbon emission is expressed in terms of environmental constraints, i.e., carbon emission constraints, is developed. These constraints aim to limit the carbon emission per unit of product supplied with different transportation modes. Here, we design a closed-loop network where capacity limits, single-item management and uncertainty on product demands and returns are considered. First, fuzzy mathematical programming is introduced for uncertain modeling. Then, the statistical approach to the possibility to synthesize fuzzy information is utilized. Therefore, using a defined possibilistic mean and variance, we transform the proposed fuzzy mathematical model into a crisp form to facilitate efficient computation and analysis. Finally, the risk caused by violating the estimated resource constraints is analyzed so that decision makers (DMs) can trade off between the expected cost savings and the expected risk. We utilize data from a company located in Iran. 相似文献
20.
As intelligent transportation systems (ITS) approach the realm of widespread deployment, there is an increasing need to robustly capture the variability of link travel time in real-time to generate reliable predictions of real-time traffic conditions. This study proposes an adaptive information fusion model to predict the short-term link travel time distribution by iteratively combining past information on link travel time on the current day with the real-time link travel time information available at discrete time points. The past link travel time information is represented as a discrete distribution. The real-time link travel time is represented as a range, and is characterized using information quality in terms of information accuracy and time delay. A nonlinear programming formulation is used to specify the adaptive information fusion model to update the short-term link travel time distribution by focusing on information quality. The model adapts good information by weighing it higher while shielding the effects of bad information by reducing its weight. Numerical experiments suggest that the proposed model adequately represents the short-term link travel time distribution in terms of accuracy and robustness, while ensuring consistency with ambient traffic flow conditions. Further, they illustrate that the mean of a representative short-term travel time distribution is not necessarily a good tracking indicator of the actual (ground truth) time-dependent travel time on that link. Parametric sensitivity analysis illustrates that information accuracy significantly influences the model, and dominates the effects of time delay and the consistency constraint parameter. The proposed information fusion model bridges key methodological gaps in the ITS deployment context related to information fusion and the need for short-term travel time distributions. 相似文献