首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《运输评论》2012,32(1):35-53
ABSTRACT

Reducing the travel time of emergency vehicles (EVs) is an effective way to improve critical services such as ambulance, fire, and police. Route optimisation and pre-emption are powerful techniques used to reduce EV travel time. This paper presents a systematic literature review of optimisation and pre-emption techniques for routing EVs. A detailed classification of existing techniques is presented along with critical analysis and discussion. The study observes the limitations of existing routing systems and lack of real-world applications of the proposed pre-emption systems, leading to several interesting and important knowledge and implementation gaps that require further investigation. These gaps include optimisations using real-time dynamic traffic data, considering time to travel as a critical parameter within dynamic route planning algorithms, considering advanced algorithms, assessing and minimising the effects of EV routing on other traffic, and addressing safety concerns in traffic networks containing multiple EVs at the same time.  相似文献   

2.
This paper focuses on the lane-changing trajectory planning (LTP) process in the automatic driving technologies. Existing studies on the LTP algorithms are primarily the static planning method in which the states of the surrounding vehicles of a lane-changing vehicle are assumed to keep unchanged in the whole lane-changing process. However, in real-world traffic, the velocities of the surrounding vehicles change dynamically, and the lane-changing vehicle needs to adjust its velocity and positions correspondingly in real-time to maintain safety. To address such limitations, the dynamic lane-changing trajectory planning (DLTP) model is proposed in the limited literature. This paper proposes a novel DLTP model consisting of the lane-changing starting-point determination module, trajectory decision module and trajectory generation module. The model adopts a time-independent polynomial trajectory curve to avoid the unrealistic assumptions on lane-changing velocities and accelerations in the existing DLTP model. Moreover, a rollover-avoidance algorithm and a collision-avoidance algorithm containing a reaction time are presented to guarantee the lane-changing safety of automated vehicles, even in an emergent braking situation. The field lane-changing data from NGSIM data are used to construct a real traffic environment for lane-changing vehicles and verify the effectiveness of the proposed model, and CarSim is applied to investigate the traceability of the planned lane-changing trajectories using the proposed model. The results indicate that an automated vehicle can complete the lane-changing process smoothly, efficiently and safely following the trajectory planned by the proposed model, and the planned velocity and trajectory can be well-tracked by automated vehicles.  相似文献   

3.
Automated driving is gaining increasing amounts of attention from both industry and academic communities because it is regarded as the most promising technology for improving road safety in the future. The ability to make an automated lane change is one of the most important parts of automated driving. However, there has been little research into automated lane change maneuvers, and current research has not identified a way to avoid potential collisions during lane changes, which result from the state variations of the other vehicles. One important reason is that the lane change vehicle cannot acquire accurate information regarding the other vehicles, especially the vehicles in the adjacent lane. However, vehicle-to-vehicle communication has the advantage of providing more information, and this information is more accurate than that obtained from other sensors, such as radars and lasers. Therefore, we propose a dynamic automated lane change maneuver based on vehicle-to-vehicle communication to accomplish an automated lane change and eliminate potential collisions during the lane change process. The key technologies for this maneuver are trajectory planning and trajectory tracking. Trajectory planning calculates a reference trajectory satisfying the demands of safety, comfort and traffic efficiency and updates it to avoid potential collisions until the lane change is complete. The trajectory planning method converts the planning problem into a constrained optimization problem using the lane change time and distance. This method is capable of planning a reference trajectory for a normal lane change, an emergency lane change and a change back to the original lane. A trajectory-tracking controller based on sliding mode control calculates the control inputs to make the host vehicle travel along the reference trajectory. Finally, simulations and experiments using a driving simulator are conducted. They demonstrate that the proposed dynamic automated lane change maneuver can avoid potential collisions during the lane change process effectively.  相似文献   

4.
In driving simulation, a scenario includes definitions of the road environment, the traffic situation, simulated vehicles’ interactions with the participant’s vehicle and measurements that need to be collected. The scenarios need to be designed in such a way that the research questions to be studied can be answered, which commonly imply exposing the participant for a couple of predefined specific situations that has to be both realistic and repeatable. This article presents an integrated algorithm based on Dynamic Actor Preparation and Automated Action Planning to control autonomous simulated vehicles in the simulation in order to generate predefined situations. This algorithm is thus able to plan driving actions for autonomous vehicles based on specific tasks with relevant contextual information as well as handling longitudinal transportation of simulated vehicles based on the contextual information in an automated manner. The conducted experiment shows that the algorithm is able to guarantee repeatability under autonomous traffic flow. The presented algorithm can benefit not only the driving simulation community, but also relevant areas, such as autonomous vehicle and in-vehicle device design by providing them with an algorithm for target pursue and driving task accomplishment, which can be used to design a human-vehicle cooperation system in the coming era of autonomous driving.  相似文献   

5.
The transportation sector is undergoing three revolutions: shared mobility, autonomous driving, and electrification. When planning the charging infrastructure for electric vehicles, it is critical to consider the potential interactions and synergies among these three emerging systems. This study proposes a framework to optimize charging infrastructure development for increasing electric vehicle (EV) adoption in systems with different levels of autonomous vehicle adoption and ride sharing participation. The proposed model also accounts for the pre-existing charging infrastructure, vehicle queuing at the charging stations, and the trade-offs between building new charging stations and expanding existing ones with more charging ports.Using New York City (NYC) taxis as a case study, we evaluated the optimum charging station configurations for three EV adoption pathways. The pathways include EV adoption in a 1) traditional fleet (non-autonomous vehicles without ride sharing), 2) future fleet (fully autonomous vehicles with ride sharing), and 3) switch-over from traditional to future fleet. Our results show that, EV adoption in a traditional fleet requires charging infrastructure with fewer stations that each has more charging ports, compared to the future fleet which benefits from having more scattered charging stations. Charging will only reduce the service level by 2% for a future fleet with 100% EV adoption. EV adoption can reduce CO2 emissions of NYC taxis by up to 861 Tones/day for the future fleet and 1100 Tones/day for the traditional fleet.  相似文献   

6.
Autonomous vehicles can be used to create realistic simulations of surrounding vehicles in driving simulators. However, the use of autonomous vehicles makes it difficult to ensure reproducibility between subjects. In this paper, an effort is made to solve the problem by combining autonomous vehicles and controlled events. A controlled event can be compared to a theatre play. The aim is to achieve the same initial play conditions for each subject, which can be problematic since the traffic situation around the subject will be dependent upon each subject’s actions while driving in autonomous traffic. This paper presents an algorithm that achieves the transition from autonomous traffic to a predefined start condition for a play. The algorithm has been tested in the Swedish National Road and Transport Research Institute (VTI) driving simulator III with promising results. In most of the cases we examined the algorithm could reconstruct the specified start condition and conduct the transition from autonomous to controlled mode in a inconspicuous way. Some problems were observed regarding moving unwanted vehicles away from the closest area around the simulator vehicle, and this part of the algorithm has to be enhanced. The experiment also showed that the subjects drove faster in the presence of controlled everyday life traffic normally used in the VTI driving simulator than in autonomous traffic.  相似文献   

7.
This paper explores critical success conditions of collaborative planning projects in the area of urban transport, evaluating the impact of new collaborative methods, instruments and processes on project performance. Hypothesis building is based on a comparative, empirical research design, rather than on deductive theory construction. Potential critical success conditions are derived from literature. Based on five urban transport planning projects in Gothenburg (Sweden), London (United Kingdom), Milwaukee (United States), Tokyo (Japan) and Mexico City (Mexico), a rough set analysis of the five cases reveals validated success conditions, which can be used for formulating hypotheses for further research or for policy and process improvement. The results suggest that a dedicated management of the multi-actor network, a high diversity of actors, as well as an extensive use of knowledge integration methods in combination with a high network density are critical success conditions of these planning processes. Surprisingly, the extensive use of unilateral methods also showed to be an important success condition. The traditional role of the planner will have to be complemented with the expertise of network and methodology management. The authors conclude that rough set analysis can be a valuable addition to narrative, single-case analysis of collaborative urban transport planning processes.  相似文献   

8.
Environmental assessments are on the critical path for the development of land, infrastructure and transportation systems. These assessments are based on planning methods which, in turn, are subject to continuous enhancement. The substantial impacts of transportation on environment, society and economy strongly urge the incorporation of sustainability into transportation planning. Two major developments that enhance transportation sustainability are new fuels and vehicle power systems. Traditional planning ignores technology including the large differences among conventional, hybrid and alternative fuel vehicles and buses. The introduction of alternative fuel vehicles is likely to change the traditional transportation planning process because different characteristics need to be taken into account. In this study a sustainability framework is developed that enables assessment of transportation vehicle characteristics. Identified indicators are grouped in five sustainability dimensions (Environment, Technology, Energy, Economy and Users). Our methodology joins life cycle impacts and a set of quantified indicators to assess the sustainability performance of seven popular light-duty vehicles and two types of transit buses. Bus Rapid Transit receives the highest sustainability index and the pickup truck the lowest. Hybrid electric vehicles are found to have the highest sustainability index among all other passenger vehicles. A sensitivity analysis shows the proposed sustainability dimensions produce robust sustainability assessment for several weighting scenarios. The results are both technology and policy sensitive, thus useful for both short- and long-term planning.  相似文献   

9.
When vehicles share their status information with other vehicles or the infrastructure, driving actions can be planned better, hazards can be identified sooner, and safer responses to hazards are possible. The Safety Pilot Model Deployment (SPMD) is underway in Ann Arbor, Michigan; the purpose is to demonstrate connected technologies in a real-world environment. The core data transmitted through Vehicle-to-Vehicle and Vehicle-to-Infrastructure (or V2V and V2I) applications are called Basic Safety Messages (BSMs), which are transmitted typically at a frequency of 10 Hz. BSMs describe a vehicle’s position (latitude, longitude, and elevation) and motion (heading, speed, and acceleration). This study proposes a data analytic methodology to extract critical information from raw BSM data available from SPMD. A total of 968,522 records of basic safety messages, gathered from 155 trips made by 49 vehicles, was analyzed. The information extracted from BSM data captured extreme driving events such as hard accelerations and braking. This information can be provided to drivers, giving them instantaneous feedback about dangers in surrounding roadway environments; it can also provide control assistance. While extracting critical information from BSMs, this study offers a fundamental understanding of instantaneous driving decisions. Longitudinal and lateral accelerations included in BSMs were specifically investigated. Varying distributions of instantaneous longitudinal and lateral accelerations are quantified. Based on the distributions, the study created a framework for generating alerts/warnings, and control assistance from extreme events, transmittable through V2V and V2I applications. Models were estimated to untangle the correlates of extreme events. The implications of the findings and applications to connected vehicles are discussed in this paper.  相似文献   

10.
This paper studies the optimal path problem for travelers driving with vehicles of a limited range, such as most battery electric vehicles currently available in the market. The optimal path in this problem often consists of several relay points, where the vehicles can be refueled to extend its range. We propose a stochastic optimal path problem with relays (SOPPR), which aims at minimizing a general expected cost while maintaining a reasonable arrival probability. To account for uncertainty in the road network, the travel speed on a road segment is treated as a discrete random variable, which determines the total energy required to traverse the segment. SOPPR is formulated in two stages in this paper. In the first stage, an optimal routing problem is solved repeatedly to obtain the expected costs and arrival probabilities from any node to all refueling nodes and the destination. With this information, the second stage constructs an auxiliary network, on which the sequence of refueling decisions can be obtained by solving another optimal path problem. Label-correcting algorithms are developed to solve the routing problems in both stages. Numerical experiments are conducted to compare the stochastic and deterministic models, to examine the impact of different parameters on the routing results, and to evaluate the computational performance of the proposed algorithms.  相似文献   

11.
It is often argued that driverless vehicles will save lives. In this paper, we treat the ethical case for driverless vehicles seriously and show that it has radical implications for the future of transport. After briefly discussing the current state of driverless vehicle technology, we suggest that systems that rely upon human supervision are likely to be dangerous when used by ordinary people in real-world driving conditions and are unlikely to satisfy the desires of consumers. We then argue that the invention of fully autonomous vehicles that pose a lower risk to third parties than human drivers will establish a compelling case against the moral permissibility of manual driving. As long as driverless vehicles aren’t safer than human drivers, it will be unethical to sell them. Once they are safer than human drivers when it comes to risks to 3rd parties, then it should be illegal to drive them: at that point human drivers will be the moral equivalent of drunk robots. We also describe two plausible mechanisms whereby this ethical argument may generate political pressure to have it reflected in legislation. Freeing people from the necessity of driving, though, will transform the relationship people have with their cars, which will in turn open up new possibilities for the transport uses of the automobile. The ethical challenge posed by driverless vehicles for transport policy is therefore to ensure that the most socially and environmentally beneficial of these possibilities is realised. We highlight several key policy choices that will determine how likely it is that this challenge will be met.  相似文献   

12.
This study proposes a framework for human-like autonomous car-following planning based on deep reinforcement learning (deep RL). Historical driving data are fed into a simulation environment where an RL agent learns from trial and error interactions based on a reward function that signals how much the agent deviates from the empirical data. Through these interactions, an optimal policy, or car-following model that maps in a human-like way from speed, relative speed between a lead and following vehicle, and inter-vehicle spacing to acceleration of a following vehicle is finally obtained. The model can be continuously updated when more data are fed in. Two thousand car-following periods extracted from the 2015 Shanghai Naturalistic Driving Study were used to train the model and compare its performance with that of traditional and recent data-driven car-following models. As shown by this study’s results, a deep deterministic policy gradient car-following model that uses disparity between simulated and observed speed as the reward function and considers a reaction delay of 1 s, denoted as DDPGvRT, can reproduce human-like car-following behavior with higher accuracy than traditional and recent data-driven car-following models. Specifically, the DDPGvRT model has a spacing validation error of 18% and speed validation error of 5%, which are less than those of other models, including the intelligent driver model, models based on locally weighted regression, and conventional neural network-based models. Moreover, the DDPGvRT demonstrates good capability of generalization to various driving situations and can adapt to different drivers by continuously learning. This study demonstrates that reinforcement learning methodology can offer insight into driver behavior and can contribute to the development of human-like autonomous driving algorithms and traffic-flow models.  相似文献   

13.
Perception system design is a vital step in the development of an autonomous vehicle (AV). With the vast selection of available off-the-shelf schemes and seemingly endless options of sensor systems implemented in research and commercial vehicles, it can be difficult to identify the optimal system for one’s AV application. This article presents a comprehensive review of the state-of-the-art AV perception technology available today. It provides up-to-date information about the advantages, disadvantages, limits, and ideal applications of specific AV sensors; the most prevalent sensors in current research and commercial AVs; autonomous features currently on the market; and localization and mapping methods currently implemented in AV research. This information is useful for newcomers to the AV field to gain a greater understanding of the current AV solution landscape and to guide experienced researchers towards research areas requiring further development. Furthermore, this paper highlights future research areas and draws conclusions about the most effective methods for AV perception and its effect on localization and mapping. Topics discussed in the Perception and Automotive Sensors section focus on the sensors themselves, whereas topics discussed in the Localization and Mapping section focus on how the vehicle perceives where it is on the road, providing context for the use of the automotive sensors. By improving on current state-of-the-art perception systems, AVs will become more robust, reliable, safe, and accessible, ultimately providing greater efficiency, mobility, and safety benefits to the public.  相似文献   

14.
Major steps towards implementation of autonomous and connected transport are being taken nowadays. The trend of automation technology being used in vehicles by the most important vehicle manufacturing industries is expected to move closer to high or fully Autonomous Vehicles (AVs) through technological advancements in sectors of robotics and artificial intelligence. Vehicles with autonomous driving capabilities are planning to be available on market, in full scale, in the next years. In the longer term substantial benefits are mainly expected for accessibility to transport, safety, traffic flow, emissions, fuel use and comfort. All these potential societal benefits will not be achieved unless AVs are accepted and used by a critical mass of people. Addressing these challenges, this paper: (a) proposes a technology acceptance modelling process by extending the original Technology Acceptance Model (TAM) to explain and predict consumers’ intensions towards AVs, (b) based on the proposed TAM-extended framework, a 30-question survey was conducted in order to investigate the factors influencing consumers’ intensions to use and accept AVs. Results show that the constructs of perceived usefulness, perceived ease to use, perceived trust and social influence, are all useful predictors of behavioral intentions to have or use AVs, with perceived usefulness having the strongest impact. The insights derived from this study could significantly contribute to ongoing research related to technology acceptance of AVs and are expected to allow automobile industries to improve their design and technology.  相似文献   

15.
J. Piao  M. McDonald 《运输评论》2013,33(5):659-684
Abstract

Advanced Driver Assistance Systems (ADAS) have been one of the most active areas of ITS studies in the last two decades. ADAS aim to support drivers by either providing warning to reduce risk exposures, or automating some of the control tasks to relieve a driver from manual control of a vehicle. ADAS functions can be achieved through an autonomous approach with all instrumentation and intelligence on board the vehicle, or through a cooperative approach, where assistance is provided from roadways and/or from other vehicles. In this article, recent research and developments of longitudinal control assistance systems are reviewed including adaptive cruise control, forward collision warning and avoidance, and platooning assistants. The review focuses on comparing between autonomous systems and cooperative systems in terms of technologies used, system impacts and implementation. The main objective is to achieve common understanding on ADAS functional potentials and limitations and to identify research needs for further studies.  相似文献   

16.
The introduction of connected and autonomous vehicles will bring changes to the highway driving environment. Connected vehicle technology provides real-time information about the surrounding traffic condition and the traffic management center’s decisions. Such information is expected to improve drivers’ efficiency, response, and comfort while enhancing safety and mobility. Connected vehicle technology can also further increase efficiency and reliability of autonomous vehicles, though these vehicles could be operated solely with their on-board sensors, without communication. While several studies have examined the possible effects of connected and autonomous vehicles on the driving environment, most of the modeling approaches in the literature do not distinguish between connectivity and automation, leaving many questions unanswered regarding the implications of different contemplated deployment scenarios. There is need for a comprehensive acceleration framework that distinguishes between these two technologies while modeling the new connected environment. This study presents a framework that utilizes different models with technology-appropriate assumptions to simulate different vehicle types with distinct communication capabilities. The stability analysis of the resulting traffic stream behavior using this framework is presented for different market penetration rates of connected and autonomous vehicles. The analysis reveals that connected and autonomous vehicles can improve string stability. Moreover, automation is found to be more effective in preventing shockwave formation and propagation under the model’s assumptions. In addition to stability, the effects of these technologies on throughput are explored, suggesting substantial potential throughput increases under certain penetration scenarios.  相似文献   

17.
Hadi Ghaderi 《运输评论》2019,39(1):152-173
ABSTRACT

The maritime industry has been continuously transforming the nature of its business and striving to embrace technology in many aspects. In this context, autonomous technologies have been receiving momentum with a potential to revolutionise the landscape of shipping industry. After conducting a comprehensive literature review on the issues facing by the short sea shipping (SSS) industry, a model is developed to explore the potential savings of removing crew and use of autonomous technologies through a Continuously Unmanned Ship (CUS) that is operated by a Shore Control Centre (SCC). The analysis shows that autonomous technologies are viable to the challenges that the shipping industry is facing in terms of crew costs and skill shortage. To validate this statement, a case study is selected and various scenarios were tested based on relevant operational and financial considerations, including crew arrangement, cargo utilisation levels and shore wage coefficients. The results suggest that the savings occur in demand-uncertain markets and where a network of vessels are operated via a control centre. While autonomous technology use in shipping holds promise, there remain several limitations that this research addresses in terms of implementation, commercial attractiveness, risk profile, legislative, workforce planning and port operations.  相似文献   

18.
Abstract

Pedestrians are currently attracting the interest of various researchers and practitioners, particularly urban and transport planners. Analysis of the pedestrian behavior, environment and modeling has been carried out in diverse instances in the context of pedestrian planning. This paper seeks to identify the content of each of these three research areas and designate the linkages that connect their interests providing insights into planning indoor pedestrian facilities. To achieve this objective, a review of the literature on pedestrians walking indoors and indoor pedestrian environments was conducted. Understanding pedestrian behavior is fundamental in the pedestrian planning process. Principles of decision-making, cognition, wayfinding and flows were studied. When analyzing the pedestrian environment, Space Syntax and wayfinding analysis were found to be established methods that are an integral part of this field. Finally, the majority of the existing modeling approaches were identified. It was found that despite the dynamic evolution of each area, the integration of different research perspectives is weak. The paper concluded with the proposal of a mindmap which brings together all the concepts found in the literature and which should be explored for a more comprehensive planning of indoor pedestrian facilities.  相似文献   

19.
新冠肺炎疫情防控期间,面对隔离医院或社区生活必需品和医疗物资的需求压力,无人配送系统因其"高效率"、"零感染"等特点,凸显了其在"最后一公里"末端配送服务链中的重要作用。本文梳理了城市"最后一公里"配送的主要特征,分析了疫情防控期间"最后一公里"配送的主要痛点,探讨了无人车配送优势及难点。在系统调研国内外"最后一公里"无人配送商业化进程以及疫情防控期间无人配送车小范围应用的基础上,总结整理了无人车配送的关键研究成果以及未来研究方向。最后探讨了"最后一公里"无人车配送的应用前景,以及落地的技术路径及发展趋势。  相似文献   

20.
In this paper, we present results regarding the experimental validation of connected automated vehicle design. In order for a connected automated vehicle to integrate well with human-dominated traffic, we propose a class of connected cruise control algorithms with feedback structure originated from human driving behavior. We test the connected cruise controllers using real vehicles under several driving scenarios while utilizing beyond-line-of-sight motion information obtained from neighboring human-driven vehicles via vehicle-to-everything (V2X) communication. We experimentally show that the design is robust against variations in human behavior as well as changes in the topology of the communication network. We demonstrate that both safety and energy efficiency can be significantly improved for the connected automated vehicle as well as for the neighboring human-driven vehicles and that the connected automated vehicle may bring additional societal benefits by mitigating traffic waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号