首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The research on carsharing has already shown that a non-negligible part of carsharing members give up a vehicle after joining a carsharing program, or avoid a vehicle purchase. This arguably reduces overall parking space needed. This might well be one of the most important impacts of a carsharing program on the transportation system, but also one of the least researched. The rapid diffusion of free-floating carsharing, which for its very nature might have a stronger impact on parking, makes the relationship between carsharing and parking an appealing topic for new research. This work presents a method for the investigation of this relationship using an agent-based simulation and explores the impacts of different parking prices on the demand for free-floating carsharing in the city of Zurich, Switzerland. Three levels of free-floating fleet-size in the city of Zurich coupled with three levels of parking prices were simulated. The obtained results show that free-floating vehicles are able to use parking spaces more efficiently than private vehicles. Moreover, the average parking occupancy tends to be more homogeneous with higher fleet-size of free-floating carsharing and with the increase of parking prices, thus avoiding spatial parking pressure peaks.  相似文献   

2.
Carsharing has grown significantly over recent years. Understanding factors related to the usage and turnover rate of shared cars will help promote the growth of carsharing programs. This study sets station-based shared car booking requests and turnover rates as learning objectives, by which generalized additive mixed models are employed to examine various effects. The results are: (1) stations with more parking spaces, longer business hours and fewer nearby stations are likely to receive more booking requests and have a higher turnover rate; (2) an area with a higher population density, a higher percentage of adults, a higher percentage of males, a greater road density, or more mixed land use is associated with more car usage and a higher turnover rate; (3) stations nearby transit hubs, colleges, and shopping centers attract more shared car users; (4) shared cars are often oversupplied at transit hubs; (5) both transit proximity and housing price present high degrees of nonlinearity in relation to shared car usage and turnover rates. Findings provide evidence for optimizing the usage and efficiency of carsharing programs: carsharing companies should identify underserved areas to initiate new businesses; carsharing seems more competitive in a distance to a bus stop between 1.2 km and 2.4 km, and carsharing is more effectively served in areas with constraints in accessing metro services; carsharing should be optimally discouraged at transit hubs to avoid the oversupply of shared cars; local authorities should develop a location-based and geographically differentiated quota in managing carsharing programs.  相似文献   

3.

In order to predict the monthly usage frequency of members of a car-sharing scheme by analysing the gradual change of behaviour over time, a new model is proposed based on the Markov Chains model with latent stages. The model accounts for changing patterns of frequency from soon after signing up to later stages by including five latent user ‘life stages’. In applying the model to panel data from Montreal’s free-floating carsharing service the authors calculate each user’s ’lifetime’ applied to ‘system operation time’, the time period since the start of the scheme. Three-fold validation reveals effective performance of the model for both lifetime and system operation time dimensions. The model is further applied to illustrate how previous carsharing experience and the extension of the scheme to a larger area can affect usage frequency changes. We conclude that this approach is effective for usage prediction for novel transport schemes.

  相似文献   

4.
One-way station-based carsharing systems allow users to return a rented car to any designated station, which could be different from the origin station. Existing research has been mainly focused on the vehicle relocation problem to deal with the travel demand fluctuation over time and demand imbalance in space. However, the strategic planning of the stations’ location and their capacity for one-way carsharing systems has not been well studied yet, especially when considering vehicle relocations simultaneously. This paper presents a Mixed-integer Non-linear Programming (MINLP) model to solve the carsharing station location and capacity problem with vehicle relocations. This entails considering several important components which are for the first time integrated in the same model. Firstly, relocation operations and corresponding relocation costs are taken into consideration to address the imbalance between trip requests and vehicle availability. Secondly, the flexible travel demand at various time steps is taken as the input to the model avoiding deterministic requests. Thirdly, a logit model is constructed to represent the non-linear demand rate by using the ratio of carsharing utility and private car utility. To solve the MINLP model, a customized gradient algorithm is proposed. The application to the SIP network in Suzhou, China, demonstrates that the algorithm can solve a real world large scale problem in reasonable time. The results identify the pricing and parking space rental costs as the key factors influencing the profitability of carsharing operators. Also, the carsharing station location and fleet size impact the vehicle relocation and carsharing patronage.  相似文献   

5.
For decades, carsharing has become an attentive dialogue among transportation planners and civic groups who have long supported and business owners and government officials who see carsharing as a means to realize their interests i.e., another market for revenue generation and replacement of government own vehicles with carshare units. It has particularly drawn attention in New York City (NYC). As of today, NYC is the largest carsharing market in the United States, accounting for about one third of all North American carsharing members. In addition to market-driven forces, the City government has pronounced pro-carsharing policies. Yet carsharing is still considered as an exclusive program to middle-income, white, and young populations. The purpose of this study is to see if carsharing can help meet the mobility demand for urban residents, especially in the marginalized neighborhoods. By investigating a leading carsharing program – Zipcar’s vehicle utilization pattern in NYC, I attempt to disentangle how neighborhoods with different socio-demographics are associated with carsharing usage. The study result revealed that there is high demand for midsize (standard) vehicles on weekdays and weeknights. In addition, carsharing usage was highly correlated with the number of total vehicles, not the number of Zipcar parking lots, if the cars are accessible within walking distances. More importantly, carsharing in low-income neighborhoods did not differ from the typical carsharing locations. What matters is the affordability. Hence, there is no reason not to consider new services or expanding existing service boundaries to the outer boroughs in the future.  相似文献   

6.
Major technological and infrastructural changes over the next decades, such as the introduction of autonomous vehicles, implementation of mileage-based fees, carsharing and ridesharing are expected to have a profound impact on lifestyles and travel behavior. Current travel demand models are unable to predict long-range trends in travel behavior as they do not entail a mechanism that projects membership and market share of new modes of transport (Uber, Lyft, etc.). We propose integrating discrete choice and technology adoption models to address the aforementioned issue. In order to do so, we build on the formulation of discrete mixture models and specifically Latent Class Choice Models (LCCMs), which were integrated with a network effect model. The network effect model quantifies the impact of the spatial/network effect of the new technology on the utility of adoption. We adopted a confirmatory approach to estimating our dynamic LCCM based on findings from the technology diffusion literature that focus on defining two distinct types of adopters: innovator/early adopters and imitators. LCCMs allow for heterogeneity in the utility of adoption for the various market segments i.e. innovators/early adopters, imitators and non-adopters. We make use of revealed preference (RP) time series data from a one-way carsharing system in a major city in the United States to estimate model parameters. The data entails a complete set of member enrollment for the carsharing service for a time period of 2.5 years after being launched. Consistent with the technology diffusion literature, our model identifies three latent classes whose utility of adoption have a well-defined set of preferences that are significant and behaviorally consistent. The technology adoption model predicts the probability that a certain individual will adopt the service at a certain time period, and is explained by social influences, network effect, socio-demographics and level-of-service attributes. Finally, the model was calibrated and then used to forecast adoption of the carsharing system for potential investment strategy scenarios. A couple of takeaways from the adoption forecasts were: (1) placing a new station/pod for the carsharing system outside a major technology firm induces the highest expected increase in the monthly number of adopters; and (2) no significant difference in the expected number of monthly adopters for the downtown region will exist between having a station or on-street parking.  相似文献   

7.
Understanding the patterns of automobile travel demand can help formulate policies to alleviate congestion and pollution. This study focuses on the influence of land use and household properties on automobile travel demand. Car license plate recognition (CLPR) data, point-of-interest (POI) data, and housing information data were utilized to obtain automobile travel demand along with the land use and household properties. A geographically and temporally weighted regression (GTWR) model was adopted to deal with both the spatial and temporal heterogeneity of travel demand. The spatial-temporal patterns of GTWR coefficients were analyzed. Also, comparative analyses were carried out between automobile and total person travel demand, and among travel demand of taxis, heavily-used private cars, and total automobiles. The results show that: (I) The GTWR model has significantly higher accuracy compared with the Ordinary Least Square (OLS) model and the Geographically Weighted Regression (GWR) model, which means the GTWR model can measure both the spatial and temporal heterogeneity with high precision; (II) The influence of built environment and household properties on automobile travel demand varies with space and time. In particular, the temporal distribution of regression coefficients shows significant peak phenomenon; and (III) Comparative analyses indicate that residents’ preference for automobiles over other travel modes varies with their travel purpose and destination. The above findings indicate that the proposed method can not only model spatial-temporal heterogeneous travel demand, but also provide a way to analyze the patterns of automobile travel demand.  相似文献   

8.
Carsharing is a vehicle sharing service for those with occasional need of private transportation. Transportation planners are beginning to see great potential for carsharing in helping to create a more diversified and sustainable transport system. While it has grown quickly in the US in recent years, it is still far from the level where it can deliver significant aggregate benefits. A key element to the potential growth of carsharing is its ability to provide cost savings to those who adopt it in favor of vehicle ownership. This research seeks to quantify these potential cost savings. The costs of carsharing and vehicle ownership are compared based on actual vehicle usage patterns from a large survey of San Francisco Bay Area residents. The results of this analysis show that a significant minority of Bay Area households own a vehicle with a usage pattern that carsharing could accommodate at a lower cost. Further research is required to indentify how these cost savings translate to the adoption of carsharing.  相似文献   

9.
10.
This paper proposes an Interactive Multiple Model-based Pattern Hybrid (IMMPH) approach to predict short-term passenger demand. The approach maximizes the effective information content by assembling the knowledge from pattern models using historical data and optimizing the interaction between them using real-time observations. It can dynamically estimate the priori pattern models combination in advance for the next time interval. The source demand data were collected by Smart Card system along one bus service route over one year. After correlation analysis, three temporal relevant pattern time series are generated, namely, the weekly, daily and hourly pattern time series. Then statistical pattern models are developed to capture different time series patterns. Finally, an amended IMM algorithm is applied to dynamically combine the pattern models estimations to output the final demand prediction. The proposed IMMPH model is validated by comparing with statistical methods and an artificial neural network based hybrid model. The results suggest that the IMMPH model provides a better forecast performance than its alternatives, including prediction accuracy, robustness, explanatory power and model complexity. The proposed approach can be potentially extended to other short-term time series forecast applications as well, such as traffic flow forecast.  相似文献   

11.
Traffic flow pattern identification, as well as anomaly detection, is an important component for traffic operations and control. To reveal the characteristics of regional traffic flow patterns in large road networks, this paper employs dictionary-based compression theory to identify the features of both spatial and temporal patterns by analyzing the multi-dimensional traffic-related data. An anomaly index is derived to quantify the network traffic in both spatial and temporal perspectives. Both pattern identifications are conducted in three different geographic levels: detector, intersection, and sub-region. From different geographic levels, this study finds several important features of traffic flow patterns, including the geographic distribution of traffic flow patterns, pattern shifts at different times-of-day, pattern fluctuations over different days, etc. Both spatial and temporal traffic flow patterns defined in this study can jointly characterize pattern changes and provide a good performance measure of traffic operations and management. The proposed method is further implemented in a case study for the impact of a newly constructed subway line. The before-and-after study identifies the major changes of surrounding road traffic near the subway stations. It is found that new metro stations attract more commute traffic in weekdays as well as entertaining traffic during weekends.  相似文献   

12.
Although one-way carsharing is suitable for more trip purposes than round-trip carsharing, many companies in the world operate only in the round-trip market. In this paper, we develop a method that optimizes the design of a one-way carsharing service between selected origin–destination pairs of an existing round-trip carsharing system. The goal is to supplement the established round-trip services with new one-way services and increase profitability. We develop an integer programming model to select the set of new one-way services and apply it to the case study of Boston, USA, considering only trips with one endpoint at a station in the round-trip Zipcar service network and the other endpoint at Logan Airport. The airport was chosen as a necessary endpoint for a one-way service because it is a very significant trip generator for which the round-trip carsharing is not suitable. Results show that these supplemental one-way services could be profitable. Enabling relocation operations between the existing round-trip stations and the Airport greatly improves the demand effectively satisfied, leads to an acceptable airport station size (in terms of the number of parking spots required), and is profitable; however, these benefits come with the need to manage relocation operations.  相似文献   

13.
Recently, carsharing has entered a phase of commercial mainstreaming as carsharing providers and urban transportation planners aim at broadening the customer base. In this context, knowledge about the motives of carsharing usage is essential for further growth. Based on a qualitative means-end chain analysis this paper therefore explores usage motives, thus expanding the existing insights from analyses of usage behavior. In a series of laddering interviews with users of a US carsharing service, the underlying hierarchical motive structure is uncovered and four motivational patterns are identified: value-seeking, convenience, lifestyle, and environmental motives. Implications are drawn for applying these insights.  相似文献   

14.
This paper presents an econometric model for the behaviour of carsharing users. The econometric model is developed to jointly forecast membership duration, the decision to become an active member in a particular month, and the frequency of monthly usage of active members. The model is estimated using the membership directory and monthly transaction data of a carsharing program, ‘Communauto Inc.’, based in Montréal, Canada. The model shows a high degree of fit to the observed dataset and provides many behavioural details of carsharing users. The results are instructive to carsharing planners in devising efficient policies.  相似文献   

15.
Juschten  Maria  Ohnmacht  Timo  Thao  Vu Thi  Gerike  Regine  Hössinger  Reinhard 《Transportation》2019,46(4):1171-1194
Transportation - This study examines the relationship between the supply and demand variables that determine the probability of individuals joining a carsharing organization, using data from the...  相似文献   

16.
Current signal systems for managing road traffic in many urban areas around the world lack a coordinated approach to detecting the spatial and temporal evolution of congestion across control regions within city networks. This severely inhibits these systems’ ability to detect reliably, on a strategic level, the onset of congestion and implement effective preventative action. As traffic is a time-dependent and non-linear system, Chaos Theory is a prime candidate for application to Urban Traffic Control (UTC) to improve congestion and pollution management. Previous applications have been restricted to relatively uncomplicated motorway and inter-urban networks, arguably where the associated problems of congestion and vehicle emissions are less severe, due to a general unavailability of high-resolution temporal and spatial data that preserve the variability in short-term traffic patterns required for Chaos Theory to work to its full potential. This paper argues that this restriction can now be overcome due to the emergence of new sources of high-resolution data and large data storage capabilities. Consequently, this opens up the real possibility for a new generation of UTC systems that are better able to detect the dynamic states of traffic and therefore more effectively prevent the onset of traffic congestion in urban areas worldwide.  相似文献   

17.
This paper examines the life-cycle inventory impacts on energy use and greenhouse gas (GHG) emissions as a result of candidate travelers adopting carsharing in US settings. Here, households residing in relatively dense urban neighborhoods with good access to transit and traveling relatively few miles in private vehicles (roughly 10% of the U.S. population) are considered candidates for carsharing. This analysis recognizes cradle-to-grave impacts of carsharing on vehicle ownership levels, travel distances, fleet fuel economy (partly due to faster turnover), parking demand (and associated infrastructure), and alternative modes. Results suggest that current carsharing members reduce their average individual transportation energy use and GHG emissions by approximately 51% upon joining a carsharing organization. Collectively, these individual-level effects translate to roughly 5% savings in all household transport-related energy use and GHG emissions in the U.S. These energy and emissions savings can be primarily attributed to mode shifts and avoided travel, followed by savings in parking infrastructure demands and fuel consumption. When indirect rebound effects are accounted for (assuming travel-cost savings is then spent on other goods and services), net savings are expected to be 3% across all U.S. households.  相似文献   

18.
An essential element of demand modeling in the airline industry is the representation of time of day demand—the demand for a given itinerary as a function of its departure or arrival times. It is an important datum that drives successful scheduling and fleet decisions. There are two key components to this problem: the distribution of the time of day demand and how preferred travel time influences itinerary choice. This paper focuses on estimating the time of day distribution. Our objective is to estimate it in a manner that is not confounded with air travel supply; is a function of the characteristics of the traveler, the trip, and the market; and accounts for potential measurement errors in self-reported travel time preferences. We employ a stated preference dataset collected by intercepting people who were booking continental US trips via an internet booking service. Respondents reported preferred travel times as well as choices from a hypothetical set of itineraries. We parameterize the time of day distribution as a mixture of normal distributions (due to the strong peaking nature of travel time preferences) and allow the mixing function to vary by individual characteristics and trip attributes. We estimate the time of day distribution and the itinerary choice model jointly in a manner that accounts for measurement error in the self-reported travel time preferences. We find that the mixture of normal distributions fits the time of day distribution well and is behaviorally intuitive. The strongest covariates of travel time preferences are party size and time zone change. The methodology employed to treat self-reported travel time preferences as potentially having error contributes to the broader transportation time of day demand literature, which either assumes that the desired travel times are known with certainty or that they are unknown. We find that the error in self-reported travel time preferences is statistically significant and impacts the inferred time of day demand distribution.  相似文献   

19.
In this paper, we demonstrate the use of an inexpensive and easy-to-collect long-term dataset to address the problems caused by basing activity space studies off short-term data. In total, we use 63,114 geo-tagged tweets from 116 unique users to create individuals’ activity spaces based on minimum bounding geometry (convex hull). By using polygon density maps of activity space, we found clear differences between weekday and weekend activity spaces, and were able to observe the growth trajectory of activity space over 17 weeks. In order to reflect the heterogeneous nature of spatial behavior and tweeting habits, we used Latent Class Analysis twice. First, to identify five unique patterns of location-based activity spaces that are different in shape and anchoring. Second, we identify three unique growth trajectories. The comparison among these latent growth trajectories shows that in order to capture the extent of activity spaces we need long time periods for some individuals and shorter periods of observation for others. We also show that past studies using a single digit number of weeks may not be sufficient to capture individuals’ activity space. The major activity locations identified using a multilevel latent class model, do not appear to be statistically related to the growth patterns of Twitter users activity spaces. The evidence here shows Twitter data can be a valuable complementary source of information for heterogeneity analysis in activity-based modeling and simulation.  相似文献   

20.
ABSTRACT

The deployment of smartphone-operated, non-station-based bicycle fleets (“dockless” or “free-floating” bikeshare) represents a new generation of bikesharing. Users locate bikes in these free-floating systems using Global Positioning Systems (GPS) and lock bikes in place at their destinations. In this paper, we review current free-floating bikesharing systems in North America and discuss priorities for future research and practice. Since launching in 2017, free-floating bikeshare has expanded rapidly to encompass 200+ systems operating 40,000+ bikes within 150+ cities. In contrast with previous systems, free-floating systems operate almost exclusively using commercial “for-profit” models, amidst concerns of financial sustainability. Governance for these systems is in early stages and can include operating fees, fleet size caps, safety requirements, parking restrictions, data sharing, and equity obligations. We identify research and practice gaps within the themes of usage, equity, sharing resources, business model, and context. While some existing bikesharing literature translates to free-floating systems, novel topics arise due to the ubiquity, fluidity, and business models of these new systems. Systems have numerous obstacles to overcome for long-term sustainability, including barriers common to station-based systems: limited supportive infrastructure, equity, theft or vandalism, and funding. Other unique obstacles arise in free-floating bikeshare around parking, sidewalk right of ways, varied bicycle types, and data sharing. This review offers background in and critical reflection on the rapidly evolving free-floating bikeshare landscape, including priorities for future research and practice. If concerns can be overcome, free-floating bikeshare may provide unprecedented opportunities to bypass congested streets, encourage physical activity, and support urban sustainability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号