共查询到20条相似文献,搜索用时 15 毫秒
1.
Chris M.J. Tampère Ruben CorthoutDirk Cattrysse Lambertus H. Immers 《Transportation Research Part B: Methodological》2011,45(1):289-309
Node models for macroscopic simulation have attracted relatively little attention in the literature. Nevertheless, in dynamic network loading (DNL) models for congested road networks, node models are as important as the extensively studied link models. This paper provides an overview of macroscopic node models found in the literature, explaining both their contributions and shortcomings. A formulation defining a generic class of first order macroscopic node models is presented, satisfying a list of requirements necessary to produce node models with realistic, consistent results. Defining a specific node model instance of this class requires the specification of a supply constraint interaction rule and (optionally) node supply constraints. Following this theoretical discussion, specific macroscopic node model instances for unsignalized and signalized intersections are proposed. These models apply an oriented capacity proportional distribution of the available supply over the incoming links of a node. A computationally efficient algorithm to solve the node models exactly is included. 相似文献
2.
The development and calibration of complex traffic models demands parsimonious techniques, because such models often involve hundreds of thousands of unknown parameters. The Weighted Simultaneous Perturbation Stochastic Approximation (W-SPSA) algorithm has been proven more efficient than its predecessor SPSA (Spall, 1998), particularly in situations where the correlation structure of the variables is not homogeneous. This is crucial in traffic simulation models where effectively some variables (e.g. readings from certain sensors) are strongly correlated, both in time and space, with some other variables (e.g. certain OD flows). In situations with reasonably sized traffic networks, the difference is relevant considering computational constraints. However, W-SPSA relies on determining a proper weight matrix (W) that represents those correlations, and such a process has been so far an open problem, and only heuristic approaches to obtain it have been considered.This paper presents W-SPSA in a formally comprehensive way, where effectively SPSA becomes an instance of W-SPSA, and explores alternative approaches for determining the matrix W. We demonstrate that, relying on a few simplifications that marginally affect the final solution, we can obtain W matrices that considerably outperform SPSA. We analyse the performance of our proposed algorithm in two applications in motorway networks in Singapore and Portugal, using a dynamic traffic assignment model and a microscopic traffic simulator, respectively. 相似文献
3.
Use of traffic simulation has increased in recent decades; and this high-fidelity modelling, along with moving vehicle animation, has allowed transportation decisions to be made with better confidence. During this time, traffic engineers have been encouraged to embrace the process of calibration, in which steps are taken to reconcile simulated and field-observed performance. According to international surveys, experts, and conventional wisdom, existing (non-automated) methods of calibration have been difficult or inadequate. There has been extensive research on improved calibration methods, but many of these efforts have not produced the flexibility and practicality required by real-world engineers. With this in mind, a patent-pending (US 61/859,819) architecture for software-assisted calibration was developed to maximize practicality, flexibility, and ease-of-use. This architecture is called SASCO (i.e. Sensitivity Analysis, Self-Calibration, and Optimization). The original optimization method within SASCO was based on “directed brute force” (DBF) searching; performing exhaustive evaluation of alternatives in a discrete, user-defined search space. Simultaneous Perturbation Stochastic Approximation (SPSA) has also gained favor as an efficient method for optimizing computationally expensive, “black-box” traffic simulations, and was also implemented within SASCO. This paper uses synthetic and real-world case studies to assess the qualities of DBF and SPSA, so they can be applied in the right situations. SPSA was found to be the fastest method, which is important when calibrating numerous inputs, but DBF was more reliable. Additionally DBF was better than SPSA for sensitivity analysis, and for calibrating complex inputs. Regardless of which optimization method is selected, the SASCO architecture appears to offer a new and practice-ready level of calibration efficiency. 相似文献
4.
Carlos F. Daganzo 《Transportation Research Part B: Methodological》2011,45(5):782-788
A simple model of traffic flow is used to analyze the spatio-temporal distribution of flow and density on closed-loop homogeneous freeways with many ramps, which produce inflows and allow outflows. As we would expect, if the on-ramp demand is space-independent then this distribution tends toward uniformity in space if the freeway is either: (i) uncongested; or (ii) congested with queues on its on-ramps and enough inflow to cause the average freeway density to increase with time. In all other cases, however, including any recovery phase of a rush hour where the freeway’s average density declines, the distribution of flow and density quickly becomes uneven. This happens even under conditions of perfect symmetry, where the percentage of vehicles exiting at every off ramp is the same. The flow-density deviations from the average are shown to grow exponentially in time and propagate backwards in space with a fixed wave speed. A consequence of this type of instability is that, during recovery, gaps of uncongested traffic will quickly appear in the unevenly congested stream, reducing average flow. This extends the duration of recovery and invariably creates clockwise hysteresis loops on scatter-plots of average system flow vs. density during any rush hour that oversaturates the freeway. All these effects are quantified with formulas and verified with simulations. Some have been observed in real networks. In a more practical vein, it is also shown that the negative effects of instability diminish (i.e., freeway flows increase) if (a) some drivers choose to exit the freeway prematurely when it is too congested and/or (b) freeway access is regulated in a certain traffic-responsive way. These two findings could be used to improve the algorithms behind VMS displays for driver guidance (finding a), and on-ramp metering rates (finding b). 相似文献
5.
A field experiment in Yokohama (Japan) revealed that a macroscopic fundamental diagram (MFD) linking space-mean flow, density and speed exists on a large urban area. It was observed that when the highly scattered plots of flow vs. density from individual fixed detectors were aggregated the scatter nearly disappeared and points grouped along a well defined curve. Despite these and other recent findings for the existence of well-defined MFDs for urban areas, these MFDs should not be universally expected. In this paper we investigate what are the properties that a network should satisfy, so that an MFD with low scatter exists. We show that the spatial distribution of vehicle density in the network is one of the key components that affect the scatter of an MFD and its shape. We also propose an analytical derivation of the spatial distribution of congestion that considers correlation between adjacent links. We investigate the scatter of an MFD in terms of errors in the probability density function of spatial link occupancy and errors of individual links’ fundamental diagram (FD). Later, using real data from detectors for an urban arterial and a freeway network we validate the proposed derivations and we show that an MFD is not well defined in freeway networks as hysteresis effects are present. The datasets in this paper consist of flow and occupancy measures from 500 fixed sensors in the Yokohama downtown area in Japan and 600 loop detectors in the Twin Cities Metropolitan Area Freeway network in Minnesota, USA. 相似文献
6.
A novel numerical approach for the approximation of several, widely applied, macroscopic traffic flow models is presented. A relaxation-type approximation of second-order non-equilibrium models, written in conservation or balance law form, is considered. Using the relaxation approximation, the nonlinear equations are transformed to a semi-linear diagonilizable problem with linear characteristic variables and stiff source terms. To discretize the resulting relaxation system, low- and high-resolution reconstructions in space and implicit–explicit Runge–Kutta time integration schemes are considered. The family of spatial discretizations includes a second-order MUSCL scheme and a fifth-order WENO scheme, and a detailed formulation of the scheme is presented. Emphasis is given on the WENO scheme and its performance for solving the different traffic models. To demonstrate the effectiveness of the proposed approach, extensive numerical tests are performed for the different models. The computations reported here demonstrate the simplicity and versatility of relaxation schemes as solvers for macroscopic traffic flow models. 相似文献
7.
In a variety of applications of traffic flow, including traffic simulation, real-time estimation and prediction, one requires a probabilistic model of traffic flow. The usual approach to constructing such models involves the addition of random noise terms to deterministic equations, which could lead to negative traffic densities and mean dynamics that are inconsistent with the original deterministic dynamics. This paper offers a new stochastic model of traffic flow that addresses these issues. The source of randomness in the proposed model is the uncertainty inherent in driver gap choice, which is represented by random state dependent vehicle time headways. A wide range of time headway distributions is allowed. From the random time headways, counting processes are defined, which represent cumulative flows across cell boundaries in a discrete space and continuous time conservation framework. We show that our construction implicitly ensures non-negativity of traffic densities and that the fluid limit of the stochastic model is consistent with cell transmission model (CTM) based deterministic dynamics. 相似文献
8.
ABSTRACTThis paper presents an overview of the recent developments in traffic flow modelling and analysis using macroscopic fundamental diagram (MFD) as well as their applications. In recent literature, various aggregated traffic models have been proposed and studied to analyse traffic flow while enhancing network efficiency. Many of these studies have focused on models based on MFD that describes the relationship between aggregated flow and aggregated density of transport networks. The analysis of MFD has been carried out based on experimental data collected from sensors and GPS, as well as simulation models. Several factors are found to influence the existence and shape of MFD, including traffic demand, network and signal settings, and route choices. As MFD can well express the traffic dynamics of large urban transport networks, it has been extensively applied to traffic studies, including the development of network-wide control strategies, network partitioning, performance evaluation, and road pricing. This work also presents future extensions and research directions for MFD-based traffic modelling and applications. 相似文献
9.
We propose a quantitative approach for calibrating and validating key features of traffic instabilities based on speed time series obtained from aggregated data of a series of neighboring stationary detectors. The approach can be used to validate models that are calibrated by other criteria with respect to their collective dynamics. We apply the proposed criteria to historic traffic databases of several freeways in Germany containing about 400 occurrences of congestions thereby providing a reference for model calibration and quality assessment with respect to the spatiotemporal dynamics. First tests with microscopic and macroscopic models indicate that the criteria are both robust and discriminative, i.e., clearly distinguishes between models of higher and lower predictive power. 相似文献
10.
The kinetic theory for traffic flow equations can be approached using the Grad’s method. This method, which is derived from the kinetic gas theory, was developed for the Paveri-Fontana equation when a special desired velocity model is assumed. A closure relation for the set of macroscopic equations is found when the density, the average velocity and the velocity variance are the relevant variables chosen to describe the system. Simulation results are also shown and a qualitative comparison with other models in the literature is presented. 相似文献
11.
A Memetic Algorithm (MA) for the calibration of microscopic traffic flow simulation models is proposed in this study. The proposed MA includes a combination of genetic and simulated annealing algorithms. The genetic algorithm performs the exploration of the search space and identifies a zone where a possible global solution could be located. After this zone has been found, the simulated annealing algorithm refines the search and locates an optimal set of parameters within that zone. The design and implementation of this methodology seeks to enable the generalized calibration of microscopic traffic flow models. Two different Corridor Simulation (CORSIM) vehicular traffic systems were calibrated for this study. All parameters after the calibration were within reasonable boundaries. The calibration methodology was developed independently of the characteristics of the traffic flow models. Hence, it is easily used for the calibration of any other model. The proposed methodology has the capability to calibrate all model parameters, considering multiple performance measures and time periods simultaneously. A comparison between the proposed MA and the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm was provided; results were similar between the two. However, the effort required to fine-tune the MA was considerably smaller when compared to the SPSA. The running time of the MA-based calibration was larger when it was compared to the SPSA running time. The MA still required some knowledge of the model in order to set adequate optimization parameters. The perturbation of the parameters during the mutation process must have been large enough to create a measurable change in the objective function, but not too large to avoid noisy measurements. 相似文献
12.
The paper proposes a first-order macroscopic stochastic dynamic traffic model, namely the stochastic cell transmission model (SCTM), to model traffic flow density on freeway segments with stochastic demand and supply. The SCTM consists of five operational modes corresponding to different congestion levels of the freeway segment. Each mode is formulated as a discrete time bilinear stochastic system. A set of probabilistic conditions is proposed to characterize the probability of occurrence of each mode. The overall effect of the five modes is estimated by the joint traffic density which is derived from the theory of finite mixture distribution. The SCTM captures not only the mean and standard deviation (SD) of density of the traffic flow, but also the propagation of SD over time and space. The SCTM is tested with a hypothetical freeway corridor simulation and an empirical study. The simulation results are compared against the means and SDs of traffic densities obtained from the Monte Carlo Simulation (MCS) of the modified cell transmission model (MCTM). An approximately two-miles freeway segment of Interstate 210 West (I-210W) in Los Ageles, Southern California, is chosen for the empirical study. Traffic data is obtained from the Performance Measurement System (PeMS). The stochastic parameters of the SCTM are calibrated against the flow-density empirical data of I-210W. Both the SCTM and the MCS of the MCTM are tested. A discussion of the computational efficiency and the accuracy issues of the two methods is provided based on the empirical results. Both the numerical simulation results and the empirical results confirm that the SCTM is capable of accurately estimating the means and SDs of the freeway densities as compared to the MCS. 相似文献
13.
Increasing concerns on environment and natural resources, coupled with increasing demand for transport, put lots of pressure for improved efficiency and performance on transport systems worldwide. New technology nowadays enables fast innovation in transport, but it is the policy for deployment and operation with a systems perspective that often determines success. Smart traffic management has played important roles for continuous development of traffic systems especially in urban areas. There is, however, still lack of effort in current traffic management and planning practice prioritizing policy goals in environment and energy. This paper presents an application of a model-based framework to quantify environmental impacts and fuel efficiency of road traffic, and to evaluate optimal signal plans with respect not only to traffic mobility performance but also other important measures for sustainability. Microscopic traffic simulator is integrated with micro-scale emission model for estimation of emissions and fuel consumption at high resolution. A stochastic optimization engine is implemented to facilitate optimal signal planning for different policy goals, including delay, stop-and-goes, fuel economy etc. In order to enhance the validity of the modeling framework, both traffic and emission models are fine-tuned using data collected in a Chinese city. In addition, two microscopic traffic models are applied, and lead to consistent results for signal optimization. Two control schemes, fixed time and vehicle actuated, are optimized while multiple performance indexes are analyzed and compared for corresponding objectives. Solutions, representing compromise between different policies, are also obtained in the case study by optimizing an integrated performance index. 相似文献
14.
An analytical approximation for the macroscopic fundamental diagram of urban traffic 总被引:1,自引:0,他引:1
Carlos F. Daganzo Nikolas Geroliminis 《Transportation Research Part B: Methodological》2008,42(9):771-781
This paper shows that a macroscopic fundamental diagram (MFD) relating average flow and average density must exist on any street with blocks of diverse widths and lengths, but no turns, even if all or some of the intersections are controlled by arbitrarily timed traffic signals. The timing patterns are assumed to be fixed in time. Exact analytical expressions in terms of a shortest path recipe are given, both, for the street’s capacity and its MFD. Approximate formulas that require little data are also given.For networks, the paper derives an upper bound for average flow conditional on average density, and then suggests conditions under which the bound should be tight; i.e., under which the bound is an approximate MFD. The MFD’s produced with this method for the central business districts of San Francisco (California) and Yokohama (Japan) are compared with those obtained experimentally in earlier publications. 相似文献
15.
Automatic calibration of fundamental diagram for first‐order macroscopic freeway traffic models 下载免费PDF全文
Renxin Zhong Changjia Chen Andy H. F. Chow Tianlu Pan Fangfang Yuan Zhaocheng He 《先进运输杂志》2016,50(3):363-385
Despite its importance in macroscopic traffic flow modeling, comprehensive method for the calibration of fundamental diagram is very limited. Conventional empirical methods adopt a steady state analysis of the aggregate traffic data collected from measurement devices installed on a particular site without considering the traffic dynamics, which renders the simulation may not be adaptive to the variability of data. Nonetheless, determining the fundamental diagram for each detection site is often infeasible. To remedy these, this study presents an automatic calibration method to estimate the parameters of a fundamental diagram through a dynamic approach. Simulated flow from the cell transmission model is compared against the measured flow wherein an optimization merit is conducted to minimize the discrepancy between model‐generated data and real data. The empirical results prove that the proposed automatic calibration algorithm can significantly improve the accuracy of traffic state estimation by adapting to the variability of traffic data when compared with several existing methods under both recurrent and abnormal traffic conditions. Results also highlight the robustness of the proposed algorithm. The automatic calibration algorithm provides a powerful tool for model calibration when freeways are equipped with sparse detectors, new traffic surveillance systems lack of comprehensive traffic data, or the case that lots of detectors lose their effectiveness for aging systems. Furthermore, the proposed method is useful for off‐line model calibration under abnormal traffic conditions, for example, incident scenarios. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
16.
Heterogeneous traffic flow, characterized by a free inter-lane exchange, has become an important issue in addressing congestion in urban areas. It is of particular interest in many developing countries, that experience a strong increase in motorcycle use. New approaches to the heterogeneous non-lane-based flow have been proposed. However insufficient empirical verification has been made to estimate vehicle interaction, that is necessary for an accurate representation of mixed-flow conditions. In this paper, we focus on the porous flow approach to capture the complex interactions. The parameters from this approach are estimated from empirical observations. Video data was recorded and processed to capture vehicle interactions at a number of road sections in Surabaya City, Indonesia. The specific behavior of each vehicle in the traffic flow was captured by developing the pore size–density distributions, analyzing the class-specific critical pore sizes, and producing the class specific speed–density and flow–density diagrams. The results reveal how critical pore sizes are based on pore size–density distributions, the flow diagram for each vehicle class, and how traffic flow relationships for motorcyclists and the other vehicles exhibit significant differences. It is concluded that the proposed approach can represent the specific behavior of the motorcyclist in heterogeneous traffic flow, in both the situations of with- and without an exclusive lane for motorcycles, can clarify motorcyclist’s behavior in terms of passenger car unit of motorcycle, and can therefore support policy making on the improvement of urban transport. 相似文献
17.
This paper considers modeling and control of uncertain Macroscopic Fundamental Diagram (MFD) systems for multiple-region networks. First, the nonlinear vehicle conservation equations based on MFD dynamics, presented in earlier publications, are transformed to linear equations with parameter uncertainties. The parameter uncertainties include the destination decomposition fractions, that are difficult to estimate in reality. Then, the uncertain linear model is utilized to design a robust feedback controller by an interpolation-based approach. This approach (i) guarantees robustness against all parameter uncertainties, (ii) handle control and state constraints, and (iii) present a computationally cheap solution. The main idea is to interpolate between (i) a stabilizing outer controller that respects the control and state constraints and (ii) an inner robustly stable controller designed by any method. The robust control is further challenged to deal with different relative locations of reference accumulation points on the MFD diagrams. Numerical results for a two-region system show that the uncertain linear model can replace the nonlinear model for modeling and control. Moreover, the robust control law is presented as implicit and explicit solutions, where in the implicit case one linear programming (LP) problem is solved at each time instant, while in the explicit case, the control law is shown as a piecewise affine function of state. Finally, a comparison between the interpolating controller and other controllers in the literature is carried out. The results demonstrate the performance advantages from applying the robust interpolating controller. 相似文献
18.
The use of advanced technologies and intelligence in vehicles and infrastructure could make the current highway transportation system much more efficient. Semi-automated vehicles with the capability of automatically following a vehicle in front as long as it is in the same lane and in the vicinity of the forward looking ranging sensor are expected to be deployed in the near future. Their penetration into the current manual traffic will give rise to mixed manual/semi-automated traffic. In this paper, we analyze the fundamental flow–density curve for mixed traffic using flow–density curves for 100% manual and 100% semi-automated traffic. Assuming that semi-automated vehicles use a time headway smaller than today’s manual traffic average due to the use of sensors and actuators, we have shown using the flow–density diagram that the traffic flow rate will increase in mixed traffic. We have also shown that the flow–density curve for mixed traffic is restricted between the flow–density curves for 100% manual and 100% semi-automated traffic. We have presented in a graphical way that the presence of semi-automated vehicles in mixed traffic propagates a shock wave faster than in manual traffic. We have demonstrated that the presence of semi-automated vehicles does not change the total travel time of vehicles in mixed traffic. Though we observed that with 50% semi-automated vehicles a vehicle travels 10.6% more distance than a vehicle in manual traffic for the same time horizon and starting at approximately the same position, this increase is marginal and is within the modeling error. Lastly, we have shown that when shock waves on the highway produce stop-and-go traffic, the average delay experienced by vehicles at standstill is lower in mixed traffic than in manual traffic, while the average number of vehicles at standstill remains unchanged. 相似文献
19.
Geertje Hegeman Andreas Tapani Serge Hoogendoorn 《Transportation Research Part C: Emerging Technologies》2009,17(6):617-630
This contribution presents the results of a microscopic traffic simulation study of the potential effects of an overtaking assistant for two-lane rural roads. The overtaking assistant is developed to support drivers in judging whether or not an overtaking opportunity can be accepted based on the distance to the next oncoming vehicle. Drivers have been found to consider this to be a difficult part of an overtaking manoeuvre. The assistant’s effects on traffic efficiency, driver comfort and road safety have been investigated using traffic simulation. The results indicate that this type of overtaking assistant can provide safety benefits in terms of increased average time-to-collision to the next oncoming vehicle during overtaking manoeuvres. This safety benefit can be achieved without negative consequences for traffic efficiency and driver comfort. A driver assistance system that supports the distance judging part of overtaking manoeuvres can therefore contribute to improved traffic conditions on the two-lane rural roads of the future. 相似文献
20.
Traffic microsimulation models normally include a large number of parameters that must be calibrated before the model can
be used as a tool for prediction. A wave of methodologies for calibrating such models has been recently proposed in the literature,
but there have been no attempts to identify general calibration principles based on their collective experience. The current
paper attempts to guide traffic analysts through the basic requirements of the calibration of microsimulation models. Among
the issues discussed here are underlying assumptions of the calibration process, the scope of the calibration problem, formulation
and automation, measuring goodness-of-fit, and the need for repeated model runs.
Yaron Hollander is a transport analyst, working for Steer Davies Gleave in London. His work combines advanced demand modelling, Stated Preference, appraisal, design of public transport systems, transport policy and network modelling. He completed his PhD at the Institute for Transport Studies in Leeds, and previously worked for the Technion – Israel Institute for Technology; for the Israeli Institute for Transportation Planning and Research; and for the public transport department at Ayalon Highways Co. Ronghui Liu is a Senior Research Fellow at the Institute for Transport Studies, University of Leeds. Her main research interests are modelling of traffic and microsimulation of driver behaviour and dynamical systems. She develops and applies network microsimulation models to a wide range of areas from transport policy instruments such as road pricing, to public transport operations and traffic signal controls. 相似文献
Ronghui LiuEmail: |
Yaron Hollander is a transport analyst, working for Steer Davies Gleave in London. His work combines advanced demand modelling, Stated Preference, appraisal, design of public transport systems, transport policy and network modelling. He completed his PhD at the Institute for Transport Studies in Leeds, and previously worked for the Technion – Israel Institute for Technology; for the Israeli Institute for Transportation Planning and Research; and for the public transport department at Ayalon Highways Co. Ronghui Liu is a Senior Research Fellow at the Institute for Transport Studies, University of Leeds. Her main research interests are modelling of traffic and microsimulation of driver behaviour and dynamical systems. She develops and applies network microsimulation models to a wide range of areas from transport policy instruments such as road pricing, to public transport operations and traffic signal controls. 相似文献