首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
In this paper, potential natural gas and renewable natural gas supply pathways and natural gas vehicles (NGVs) have been selected and evaluated with regards to well-to-wheel energy expended, greenhouse gas (GHG) emissions, and regulated (air pollutant) emissions. The vehicles included in the evaluation are passenger cars, light-duty vehicles (LDVs), and heavy-duty vehicles (HDVs) for road-transport applications, and a short-range passenger vessel for maritime transport applications. The results show that, compared to conventional fuels, in both transport applications and for all vehicle classes, the use of compressed and liquefied natural gas has a 15–27% GHG emissions reduction effect per km travel. The effect becomes large, 81–211%, when compressed and liquefied renewable natural gas are used instead. The results are sensitive to the type and source of feedstock used, the type of vehicle engine, assumed methane leakage and methane slip, and the allocated energy and environmental digestate credits, in each pathway. In maritime applications, the use of liquefied natural gas and renewable natural gas instead of low sulfur marine fuels results in a 60–100% SOx and 90–96% PM emissions reduction. A 1% methane slip from a dedicated LNG passenger vessel results, on average, in 8.5% increase in net GHG emissions.  相似文献   

2.
    
The retail route design problem extends the capacitated vehicle routing problem with time windows by introducing several operational constraints, including order loading and delivery restrictions (last-in, first-out), order-dependent vehicle capacity, material handling limits at the warehouse, backhauling, and driving time bounds. In this paper, the problem is modeled on a directed network for an application associated with a major grocery chain. Because the corresponding mixed-integer program proved too difficult to solve with commercial software for real instances, we developed a greedy randomized adaptive search procedure (GRASP) augmented with tabu search to provide solutions. Testing was done using data sets provided Kroger, the largest grocery chain in the US, and benchmarked against a previously developed column generation algorithm. The results showed that cost reductions of $4887 per day or 5.58% per day on average, compared to Kroger’s corresponding solutions.  相似文献   

3.
    
As the concerns about air pollution have steadily increased, the perception that ships are the source of pollutants and toxic emissions is also expanding. Thus, the International Maritime Organization (IMO) is tightening maritime regulations to reduce air pollution from ships. Currently, the government and related industries are trying to replace heavy fuel oil with liquefied natural gas (LNG) to counter future IMO regulations. Since the use of LNG is expected to increase costs, it is necessary to estimate the social benefits to determine the legitimacy of the replacement. The purpose of this study is to analyse the public’s willingness to pay (WTP) for products imported in LNG-fuelled ships using the contingent valuation method. Flour, the most of which is currently imported in South Korea, is chosen as the subject of empirical analysis. As a result, the mean additional WTP was KRW 571 (USD 0.51) per kg. This value corresponds to about 36% of the existing flour price. Therefore, South Korean households are willing to pay a considerable premium on the flour imported via LNG-fuelled ships. These results can serve as useful bases for future LNG bunkering-related policies.  相似文献   

4.
    
Liquefied natural gas (LNG) has emerged as a possible alternative fuel for freight railroads in the United States, due to the availability of cheap domestic natural gas and continued pursuit of environmental and energy sustainability. A safety concern regarding the deployment of LNG-powered trains is the risk of breaching the LNG tender car (a special type of hazardous materials car that stores fuel for adjacent locomotives) in a train accident. When a train is derailed, an LNG tender car might be derailed or damaged, causing a release and possible fire. This paper describes the first study that focuses on modeling the probability of an LNG tender car release incident due to a freight train derailment on a mainline. The model accounts for a number of factors such as FRA track class, method of operation, annual traffic density level, train length, the point of derailment, accident speed, the position(s) of the LNG tender(s) in a train, and LNG tender car design. The model can be applied to any specified route or network with LNG-fueled trains. The implementation of the model can be undertaken by the railroad industry to develop proactive risk management solutions when using LNG as an alternative railroad fuel.  相似文献   

5.
天然气管网最优化设计概述   总被引:1,自引:0,他引:1  
在论述了自20世纪90年代以来国内外天然气管网优化设计方法的基础上,讨论了几种常用的优化方法,并分析了这些方法的优缺点。针对传统优化方法收敛速度慢、易于陷入局部最优解等缺点,提出将近几年来新兴的智能优化算法应用到管网优化设计问题中,将多种方法有机结合,提高算法的性能。  相似文献   

6.
The delivery service provided by large-scale retailers continues to grow as online sales occupy an increasingly large share of the market. This study aims to tease out efficient vehicle scheduling times as well as optimal delivery routes by applying meta-heuristic algorithms. Monthly data on existing routes were obtained from a branch of Korea’s leading large-scale online retailer. The first task was to examine the status of existing routes by comparing delivery routes created using Dijkstra’s algorithm with existing delivery routes and their vehicle scheduling. The second task was to identify optimal delivery routes through a comparative analysis of the genetic algorithm and Tabu search algorithm, known for its superior applicability amongst other meta-heuristic algorithms. These findings demonstrate that the optimal vehicle routing problem not only has the potential to reduce distribution costs for operators and expedite delivery for consumers, but also the added social benefit of reduced carbon emissions.  相似文献   

7.
    
The Electric Vehicle Routing Problem with Time Windows (EVRPTW) is an extension to the well-known Vehicle Routing Problem with Time Windows (VRPTW) where the fleet consists of electric vehicles (EVs). Since EVs have limited driving range due to their battery capacities they may need to visit recharging stations while servicing the customers along their route. The recharging may take place at any battery level and after the recharging the battery is assumed to be full. In this paper, we relax the full recharge restriction and allow partial recharging (EVRPTW-PR), which is more practical in the real world due to shorter recharging duration. We formulate this problem as a 0–1 mixed integer linear program and develop an Adaptive Large Neighborhood Search (ALNS) algorithm to solve it efficiently. We apply several removal and insertion mechanisms by selecting them dynamically and adaptively based on their past performances, including new mechanisms specifically designed for EVRPTW and EVRPTW-PR. These new mechanisms include the removal of the stations independently or along with the preceding or succeeding customers and the insertion of the stations with determining the charge amount based on the recharging decisions. We test the performance of ALNS by using benchmark instances from the recent literature. The computational results show that the proposed method is effective in finding high quality solutions and the partial recharging option may significantly improve the routing decisions.  相似文献   

8.
Transportation is an important source of greenhouse gas (GHG) emissions. In this paper, we develop a bi-level model for GHG emission charge based on continuous distribution of the value of time (VOT) for travelers. In the bi-level model framework, a policy maker (as the leader) seeks an optimal emission charge scheme, with tolls differentiated across travel modes (e.g., bus, motorcycles, and cars), to achieve a given GHG reduction target by shifting the proportions of travelers taking different modes. In response, travelers (as followers) will adjust their travel modes to minimize their total travel cost. The resulting mode shift, hence the outcome of the emission charge policy, depends on travelers’ VOT distribution. For the solution of the bi-level model, we integrate a differential evolution algorithm for the upper level and the “all or nothing” traffic assignment for the lower level. Numerical results from our analysis suggest important policy implications: (1) in setting the optimal GHG emission charge scheme for the design of transportation GHG emission reduction targets, policy makers need to be equipped with rigorous understanding of travelers’ VOT distribution and the tradeoffs between emission reduction and system efficiency; and (2) the optimal emission charge scheme in a city depends significantly on the average value of travelers’ VOT distribution—the optimal emission charge can be designed and implemented in consistency with rational travel flows. Further sensitivity analysis considering various GHG reduction targets and different VOT distributions indicate that plausible emission toll schemes that encourage travelers to choose greener transportation modes can be explored as an efficient policy instrument for both transportation network performance improvement and GHG reduction.  相似文献   

9.

This paper presents an artificial neural network (ANN) based method for estimating route travel times between individual locations in an urban traffic network. Fast and accurate estimation of route travel times is required by the vehicle routing and scheduling process involved in many fleet vehicle operation systems such as dial‐a‐ride paratransit, school bus, and private delivery services. The methodology developed in this paper assumes that route travel times are time‐dependent and stochastic and their means and standard deviations need to be estimated. Three feed‐forward neural networks are developed to model the travel time behaviour during different time periods of the day‐the AM peak, the PM peak, and the off‐peak. These models are subsequently trained and tested using data simulated on the road network for the City of Edmonton, Alberta. A comparison of the ANN model with a traditional distance‐based model and a shortest path algorithm is then presented. The practical implication of the ANN method is subsequently demonstrated within a dial‐a‐ride paratransit vehicle routing and scheduling problem. The computational results show that the ANN‐based route travel time estimation model is appropriate, with respect to accuracy and speed, for use in real applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号