首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents a route choice model for public transit networks that incorporates variables related to network topology, complementing those found in traditional models based on service levels (travel time, cost, transfers, etc.) and users’ socioeconomic and demographic characteristics (income level, trip purpose, etc.). The topological variables represent concepts such as the directness of the chosen route and user knowledge of the network. For both of these factors, the necessary data is endogenous to the modelling process and can be quantified without the need for information-gathering beyond what is normally required for building route choice models. Other novel variables in the proposed formulation capture notions of user comfort such as vehicle occupancy rates and certain physical characteristics of network stations. We conclude that these new variables significantly improve the explanatory and predictive ability of existing route choice specifications.  相似文献   

2.
It is widely acknowledged that cyclists choose their route differently to drivers of private vehicles. The route choice decision of commuter drivers is often modelled with one objective, to reduce their generalised travel cost, which is a monetary value representing the combined travel time and vehicle operating cost. Commuter cyclists, on the other hand, usually have multiple incommensurable objectives when choosing their route: the travel time and the suitability of a route. By suitability we mean non-subjective factors that characterise the suitability of a route for cycling, including safety, traffic volumes, traffic speeds, presence of bicycle lanes, whether the terrain is flat or hilly, etc. While these incommensurable objectives are difficult to be combined into a single objective, it is also important to take into account that each individual cyclist may prioritise differently between travel time and suitability when they choose a route.This paper proposes a novel model to determine the route choice set of commuter cyclists by formulating a bi-objective routing problem. The two objectives considered are travel time and suitability of a route for cycling. Rather than determining a single route for a cyclist, we determine a choice set of optimal alternative routes (efficient routes) from which a cyclist may select one according to their personal preference depending on their perception of travel time versus other route choice criteria considered in the suitability index. This method is then implemented in a case study in Auckland, New Zealand.The study provides a starting point for the trip assignment of cyclists, and with further research, the bi-objective routing model developed can be applied to create a complete travel demand forecast model for cycle trips. We also suggest the application of the developed methodology as an algorithm in an interactive route finder to suggest efficient route choices at different levels of suitability to cyclists and potential cyclists.  相似文献   

3.
Although many individual route choice models have been proposed to incorporate travel time variability as a decision factor, they are typically still deterministic in the sense that the optimal strategy requires choosing one particular route that maximizes utility. In contrast, this study introduces an individual route choice model where choosing a portfolio of routes instead of a single route is the best strategy for a rational traveler who cares about both journey time and lateness when facing stochastic network conditions. The proposed model is compared with UE and SUE models and the difference in both behavioral foundation and model characteristics is highlighted. A numerical example is introduced to demonstrate how such model can be used in traffic assignment problem. The model is then tested with GPS data collected in metropolitan Minneapolis–St. Paul, Minnesota. Our data suggest there is no single dominant route (defined here as a route with the shortest travel time for a 15 day period) in 18% of cases when links travel times are correlated. This paper demonstrates that choosing a portfolio of routes could be the rational choice of a traveler who wants to optimize route decisions under variability.  相似文献   

4.
5.
We propose a route choice model that relaxes the independence from irrelevant alternatives property of the logit model by allowing scale parameters to be link specific. Similar to the recursive logit (RL) model proposed by Fosgerau et al. (2013), the choice of path is modeled as a sequence of link choices and the model does not require any sampling of choice sets. Furthermore, the model can be consistently estimated and efficiently used for prediction.A key challenge lies in the computation of the value functions, i.e. the expected maximum utility from any position in the network to a destination. The value functions are the solution to a system of non-linear equations. We propose an iterative method with dynamic accuracy that allows to efficiently solve these systems.We report estimation results and a cross-validation study for a real network. The results show that the NRL model yields sensible parameter estimates and the fit is significantly better than the RL model. Moreover, the NRL model outperforms the RL model in terms of prediction.  相似文献   

6.
In this paper, we study the boundedly rational route choice behavior under the Simon’s satisficing rule. A laboratory experiment was carried out to verify the participants’ boundedly rational route choice behavior. By introducing the concept of aspiration level which is specific to each person, we develop a novel model of the problem in a parallel-link network and investigate the properties of the boundedly rational user equilibrium (BRUE) state. Conditions for ensuring the existence and uniqueness of the BRUE solution are derived. A solution method is proposed to find the unique BRUE state. Extensions to general networks are conducted. Numerical examples are presented to demonstrate the theoretical analyses.  相似文献   

7.
There is substantial evidence to indicate that route choice in urban areas is complex cognitive process, conducted under uncertainty and formed on partial perspectives. Yet, conventional route choice models continue make simplistic assumptions around the nature of human cognitive ability, memory and preference. In this paper, a novel framework for route choice in urban areas is introduced, aiming to more accurately reflect the uncertain, bounded nature of route choice decision making. Two main advances are introduced. The first involves the definition of a hierarchical model of space representing the relationship between urban features and human cognition, combining findings from both the extensive previous literature on spatial cognition and a large route choice dataset. The second advance involves the development of heuristic rules for route choice decisions, building upon the hierarchical model of urban space. The heuristics describe the process by which quick, ‘good enough’ decisions are made when individuals are faced with uncertainty. This element of the model is once more constructed and parameterised according to findings from prior research and the trends identified within a large routing dataset. The paper outlines the implementation of the framework within a real-world context, validating the results against observed behaviours. Conclusions are offered as to the extension and improvement of this approach, outlining its potential as an alternative to other route choice modelling frameworks.  相似文献   

8.
Modelling route choice behaviour in multi-modal transport networks   总被引:1,自引:0,他引:1  
The paper presents new findings on the influence of multi-modal trip attributes on the quality and competitiveness of inter-urban multi-modal train alternatives. The analysis covers the entire trip from origin to destination, including access and egress legs to and from the train network. The focus is on preferences for different feeder modes, railway station types and train service types as well as on the relative influence of time elements and transfer penalties. Data from dedicated surveys are used including individual objective choice sets of 235 multi-modal homebound trips in which train is the main transport mode. The observed trips have origins and destinations within the Rotterdam–Dordrecht region in The Netherlands with an average total trip time of 50 minutes. Hierarchical Nested Logit models are estimated to take account of unobserved similarities between alternatives at the home-end and the activity-end of the trip respectively, resulting in two-level nesting structures which differentiate between intercity (IC) and non-intercity railway station types at the upper level and between transit and private access modes at the lower level. In order to reflect the multi-dimensional structure of the data a more advanced so-called Multi-Nested GEV model according to the Principles of Differentiation has been estimated which significantly improves the explanatory power and stresses the importance of the home-end of the multi-modal trip.  相似文献   

9.
In this paper, we propose a novel approach to model route choice behaviour in a tolled road network with a bi-objective approach, assuming that all users have two objectives: (1) minimise travel time; and (2) minimise toll cost. We assume further that users have different preferences in the sense that for any given path with a specific toll, there is a limit on the time that an individual would be willing to spend. Different users can have different preferences represented by this indifference curve between toll and time. Time surplus is defined as the maximum time minus the actual time. Given a set of paths, the one with the highest (or least negative) time surplus will be the preferred path for the individual. This will result in a bi-objective equilibrium solution satisfying the time surplus maximisation bi-objective user equilibrium (TSmaxBUE) condition. That is, for each O–D pair, all individuals are travelling on the path with the highest time surplus value among all the efficient paths between this O–D pair.We show that the TSmaxBUE condition is a proper generalisation of user equilibrium with generalised cost function, and that it is equivalent to bi-objective user equilibrium. We also present a multi-user class version of the TSmaxBUE condition and demonstrate our concepts with illustrative examples.  相似文献   

10.
Understanding travellers’ behaviour is key element in transportation planning. This article presents a route choice model for metro networks that considers different time components as well as variables related to the transferring experience, train crowding, network topology and socio-demographic characteristics. The route choice model is applied to the London Underground and Santiago Metro networks, to make a comparison of the decision making process of the users on both cities. As all the variables are statistically significant, it is possible to affirm that public transport users take into account a wide variety of elements when choosing routes. While in London the travellers prefer to spend time walking, in Santiago is preferable to spend time waiting. Santiago Metro users are more willing to travel in crowded trains than London Underground users. Both user groups have a similar dispreference to transfers after controlling for the time spent on transfer, but different attitudes to ascending and descending transfers. Topological factors presented on a distorted Metro map are more important than actual topology to passengers’ route choice decisions.  相似文献   

11.
This paper presents a new paradigm for choice set generation in the context of route choice model estimation. We assume that the choice sets contain all paths connecting each origin–destination pair. Although this is behaviorally questionable, we make this assumption in order to avoid bias in the econometric model. These sets are in general impossible to generate explicitly. Therefore, we propose an importance sampling approach to generate subsets of paths suitable for model estimation. Using only a subset of alternatives requires the path utilities to be corrected according to the sampling protocol in order to obtain unbiased parameter estimates. We derive such a sampling correction for the proposed algorithm.Estimating models based on samples of alternatives is straightforward for some types of models, in particular the multinomial logit (MNL) model. In order to apply MNL for route choice, the utilities should also be corrected to account for the correlation using, for instance, a path size (PS) formulation. We argue that the PS attribute should be computed based on the full choice set. Again, this is not feasible in general, and we propose a new version of the PS attribute derived from the sampling protocol, called Expanded PS.Numerical results based on synthetic data show that models including a sampling correction are remarkably better than the ones that do not. Moreover, the Expanded PS shows good results and outperforms models with the original PS formulation.  相似文献   

12.
We present an operational estimation procedure for the estimation of route choice multivariate extreme value (MEV) models based on sampling of alternatives. The procedure builds on the state-of-the-art literature, and in particular on recent methodological developments proposed by Flötteröd and Bierlaire (2013) and Guevara and Ben-Akiva (2013b). Case studies on both synthetic data and a real network demonstrate that the new method is valid and practical.  相似文献   

13.
14.
In this paper, two‐tier mathematical models were developed to simulate the microscopic pedestrian decision‐making process of route choice at signalized crosswalks. In the first tier, a discrete choice model was proposed to predict the choices of walking direction. In the second tier, an exponential model was calibrated to determine the step size in the chosen direction. First, a utility function was defined in the first‐tier model to describe the change of utility in response to deviation from a pedestrian's target direction and the conflicting effects of neighboring pedestrians. A mixed logit model was adopted to estimate the effects of the explanatory variables on the pedestrians' decisions. Compared with the standard multinomial logit model, it was shown that the mixed logit model could accommodate the heterogeneity. The repeated observations for each pedestrian were grouped as panel data to ensure that the parameters remained constant for individual pedestrians but varied among the pedestrians. The mixed logit model with panel data was found to effectively address inter‐pedestrian heterogeneity and resulted in a better fit than the standard multinomial logit model. Second, an exponential model in the second tier was proposed to further determine the step size of individual pedestrians in the chosen direction; it indicates the change in walking speed in response to the presence of other pedestrians. Finally, validation was conducted on an independent set of observation data in Hong Kong. The pedestrians' routes and destinations were predicted with the two‐tier models. Compared with the tracked trajectories, the average error between the predicted destinations and the observed destinations was within an acceptable margin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Emerging sensing technologies such as probe vehicles equipped with Global Positioning System (GPS) devices on board provide us real-time vehicle trajectories. They are helpful for the understanding of the cases that are significant but difficult to observe because of the infrequency, such as gridlock networks. On the premise of this type of emerging technology, this paper propose a sequential route choice model that describes route choice behavior, both in ordinary networks, where drivers acquire spatial knowledge of networks through their experiences, and in extraordinary networks, which are situations that drivers rarely experience, and applicable to real-time traffic simulations. In extraordinary networks, drivers do not have any experience or appropriate information. In such a context, drivers have little spatial knowledge of networks and choose routes based on dynamic decision making, which is sequential and somewhat forward-looking. In order to model these decision-making dynamics, we propose a discounted recursive logit model, which is a sequential route choice model with the discount factor of expected future utility. Through illustrative examples, we show that the discount factor reflects drivers’ decision-making dynamics, and myopic decisions can confound the network congestion level. We also estimate the parameters of the proposed model using a probe taxis’ trajectory data collected on March 4, 2011 and on March 11, 2011, when the Great East Japan Earthquake occurred in the Tokyo Metropolitan area. The results show that the discount factor has a lower value in gridlock networks than in ordinary networks.  相似文献   

16.
Research on connected vehicle environment has been growing rapidly to investigate the effects of real-time exchange of kinetic information between vehicles and road condition information from the infrastructure through radio communication technologies. A fully connected vehicle environment can substantially reduce the latency in response caused by human perception-reaction time with the prospect of improving both safety and comfort. This study presents a dynamical model of route choice under a connected vehicle environment. We analyze the stability of headways by perturbing various factors in the microscopic traffic flow model and traffic flow dynamics in the car-following model and dynamical model of route choice. The advantage of this approach is that it complements the macroscopic traffic assignment model of route choice with microscopic elements that represent the important features of connected vehicles. The gaps between cars can be decreased and stabilized even in the presence of perturbations caused by incidents. The reduction in gaps will be helpful to optimize the traffic flow dynamics more easily with safe and stable conditions. The results show that the dynamics under the connected vehicle environment have equilibria. The approach presented in this study will be helpful to identify the important properties of a connected vehicle environment and to evaluate its benefits.  相似文献   

17.
Due to the limited cruising range of battery electric vehicle (BEV), BEV drivers show obvious difference in travel behavior from gasoline vehicle (GV) drivers. To analyze BEV drivers’ charging and route choice behaviors, and extract the differences between BEV and GV drivers’ travel behavior, two multinomial logit-based and two nested logit-based models are proposed in this study based on a stated preference survey. The nested structure consists of two levels: the upper level represents the charging decision, and the lower level shows the route choices corresponding to the charging and no-charging situations respectively. The estimated results demonstrate that the nested structure is more appropriate than the multinomial structure. Meanwhile, it is observed that the initial state of charge (SOC) at origin of BEV is the most important factor that affects the decision of charging or not, and the SOC at destination becomes an important impact factor affecting BEV drivers’ route choice behavior. As for the route choice behavior when BEV has charging demand, the charging station attributes such as charging time and charging station’s location have significant influences on BEV drivers’ decision-making process. The results also show that BEV drivers incline to choose the routes with charging station having less charging time, being closer to origin and consistent with travel direction. Finally, based on the proposed models, a series of numerical analysis has been conducted to verify the effect of range anxiety on BEV charging and route choice behavior and to reveal the variation of comfortable initial SOC at origin with travel distance. Meanwhile, the effects of charging time and distance from origin to charging station also have been discussed.  相似文献   

18.
This paper proposes a unified approach to modeling heterogonous risk-taking behavior in route choice based on the theory of stochastic dominance (SD). Specifically, the first-, second-, and third-order stochastic dominance (FSD, SSD, TSD) are respectively linked to insatiability, risk-aversion and ruin-aversion within the framework of utility maximization. The paths that may be selected by travelers of different risk-taking preferences can be obtained from the corresponding SD-admissible paths, which can be generated using general dynamic programming. This paper also analyzes the relationship between the SD-based approach and other route choice models that consider risk-taking behavior. These route choice models employ a variety of reliability indexes, which often make the problem of finding optimal paths intractable. We show that the optimal paths with respect to these reliability indexes often belong to one of the three SD-admissible path sets. This finding offers not only an interpretation of risk-taking behavior consistent with the SD theory for these route choice models, but also a unified and computationally viable solution approach through SD-admissible path sets, which are usually small and can be generated without having to enumerate all paths. A generic label-correcting algorithm is proposed to generate FSD-, SSD-, and TSD-admissible paths, and numerical experiments are conducted to test the algorithm and to verify the analytical results.  相似文献   

19.
While the existing literature has focused on the short-term impacts, this paper investigates the long-term impacts of high-speed rail (HSR) competition on airlines. An analytical model is developed to study how an airline may change its network and market coverage when facing HSR competition on trunk routes. We show that prior to HSR competition, an airline is more likely to adopt a fully-connected network and cover fewer fringe markets if the trunk market is large. Under HSR competition, the airline will, for a given network structure, have a greater incentive to cover more fringe (regional or foreign) markets if the trunk market is large, or the airline network is close to hub-and-spoke. Further, the airline will, for any given market coverage, move towards a hub-and-spoke network when the trunk market is large, or the number of fringe markets covered by the airline network is large. Both effects are more prominent when the decreasing rate of airline density economies is large. We further show that HSR competition can induce the airline to adopt network structure and market coverage that are closer to the socially optimal ones, thereby suggesting a new source of welfare gain from HSR based on its long-term impacts on airlines. Implications for operators, policy makers and specific countries (such as China) are also discussed.  相似文献   

20.
The influence of route guidance advice on route choice in urban networks   总被引:5,自引:0,他引:5  
The paper begins by reviewing what is known about route choice processes and notes the mismatch between this knowledge and the route choice assumptions embedded in the most widely used assignment models. Empirical evidence on the influence of route guidance advice on route choice is reviewed and, despite its limited nature, is seen to suggest that users are reluctant to follow advice unless they find it convincing and that, the more familiar they are with the network, the less likely they are to accept advice. Typically only a small minority of journeys are made in total compliance with advice.Results from an interactive route choice simulator (IGOR) are summarised and are seen to reveal that compliance depends on the extent to which the advice is corroborated by other factors, on the drivers' familiarity with the network and on the quality of advice previously received. It is noted that the IGOR results are in a form which would enable response models to be calibrated.Recent approaches to the modelling of route choice in the context of guidance are discussed. Some are seen to make simplifying assumptions which must limit the relevance of their results; most make no allowance for the fact that drivers are unlikely to comply with all advice and several are not able to represent the benefits which guidance might bring in the context of sporadic congestion or incidents.As an alternative, a two phase model comprising a medium term strategic equilibrium and a day-specific simulation with explicit representation of driver response is proposed.Updated and extended from an earlier version published in theProceedings of the Japan Society of Civil Engineers (JSCE No 425/IV-4, 1991-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号