首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
Traffic congestion has been a growing issue in many metropolitan areas during recent years, which necessitates the identification of its key contributors and development of sustainable strategies to help decrease its adverse impacts on traffic networks. Road incidents generally and crashes specifically have been acknowledged as the cause of a large proportion of travel delays in urban areas and account for 25% to 60% of traffic congestion on motorways. Identifying the critical determinants of travel delays has been of significant importance to the incident management systems, which constantly collect and store the incident duration data. This study investigates the individual and simultaneous differential effects of the relevant determinants on motorway crash duration probabilities. In particular, it applies parametric Accelerated Failure Time (AFT) hazard‐based models to develop in‐depth insights into how the crash‐specific characteristic and the associated temporal and infrastructural determinants impact the duration. AFT models with both fixed and random parameters have been calibrated on one year of traffic crash records from two major Australian motorways in South East Queensland, and the differential effects of determinants on crash survival functions have been studied on these two motorways individually. A comprehensive spectrum of commonly used parametric fixed parameter AFT models, including generalized gamma and generalized F families, has been compared with random parameter AFT structures in terms of goodness of fit to the duration data, and as a result, the random parameter Weibull AFT model has been selected as the most appropriate model. Significant determinants of motorway crash duration included traffic diversion requirement, crash injury type, number and type of vehicles involved in a crash, day of week and time of day, towing support requirement and damage to the infrastructure. A major finding of this research is that the motorways under study are significantly different in terms of crash durations; such that motorway 1 exhibits durations that are on average 19% shorter compared with the durations on motorway 2. The differential effects of explanatory variables on crash durations are also different on the two motorways. The detailed presented analysis confirms that looking at the motorway network as a whole, neglecting the individual differences between roads, can lead to erroneous interpretations of duration and inefficient strategies for mitigating travel delays along a particular motorway.  相似文献   

2.
Abstract

Achievement of a desirable level of customer service at intermodal terminals mainly depends on the efficient loading and unloading of trains without delays. The efficiency of the transfer between the modes in the terminal area can have a significant effect on these delays. In this article, an analytically based simulation model is developed to investigate delays of trains for different service configurations. Simulation outputs are used to find an optimum balance of the cost of train delays and variation from the desired level of service. Data from the Acacia Ridge Terminal in Brisbane, Australia are used to validate and test the model.  相似文献   

3.
地铁站点施工期交通组织工作思路与方法   总被引:2,自引:0,他引:2  
由于地铁站点施工对城市交通会产生极大的影响,因此提前做好施工期间系统的交通组织工作,对保障城市正常生产、生活和地铁站点的顺利施工有着重要意义。文章结合成都地铁二号线站点施工期间交通组织工作经验,针对地铁施工的特点,就施工期间的交通组织工作思路、方法等进行探讨。  相似文献   

4.
Incidents are notorious for their delays to road users. Secondary incidents – i.e., incidents that occur within a certain temporal and spatial distance from the first/primary incident – can further complicate clearance and add to delays. While there are numerous studies on the empirical analysis of incident data, to the best of our knowledge, an analytical model that can be used for primary and secondary incident management planning that explicitly considers both the stochastic as well as the dynamic nature of traffic does not exist. In this paper, we present such a complementary model using a semi-Markov stochastic process approach. The model allows for unprecedented generality in the modeling of stochastics during incidents on freeways. Particularly, we relax the oftentimes restrictive Poisson assumption (in the modeling of vehicle arrivals, vehicle travel times, and incidence occurrence and recovery times) and explicitly model secondary incidents. Numerical case studies are provided to illustrate the proposed model.  相似文献   

5.
An intermodal transportation terminal is a facility that provides commuters with easy transfer between transit modes and providers such as buses, light rail, subway, taxis, airport shuttles, and commuter rail. The probability of a passenger transferring from one mode to another and the estimation of total transfer demand are of great importance to both practitioners and researchers when determining optimal design alternatives as well as the best control and management policies for daily operation of the terminal. This article presents a study that uses an entropy-based optimization approach to estimate the transfer demands between the available transportation modes in an intermodal transportation terminal. The development and calibration of the entropy model is presented in the first part of the article, which is followed by a case study of the SiHui Intermodal Terminal in Beijing, China.  相似文献   

6.
Reliable and accurate short-term subway passenger flow prediction is important for passengers, transit operators, and public agencies. Traditional studies focus on regular demand forecasting and have inherent disadvantages in predicting passenger flows under special events scenarios. These special events may have a disruptive impact on public transportation systems, and should thus be given more attention for proactive management and timely information dissemination. This study proposes a novel multiscale radial basis function (MSRBF) network for forecasting the irregular fluctuation of subway passenger flows. This model is simplified using a matching pursuit orthogonal least squares algorithm through the selection of significant model terms to produce a parsimonious MSRBF model. Combined with transit smart card data, this approach not only exhibits superior predictive performance over prevailing computational intelligence methods for non-regular demand forecasting at least 30 min prior, but also leverages network knowledge to enhance prediction capability and pinpoint vulnerable subway stations for crowd control measures. Three empirical studies with special events in Beijing demonstrate that the proposed algorithm can effectively predict the emergence of passenger flow bursts.  相似文献   

7.
Incident clearance time is a major performance measure of the traffic emergency management. A clear understanding of the contributing factors and their effects on incident clearance time is essential for optimal incident management resource allocations. Most previous studies simply considered the average effects of the influential factors. Although the time-varying effects are also important for incident management agencies, they were not sufficiently investigated. To fill up the gap, this study develops a non-proportional hazard-based duration model for analyzing the time-varying effects of influential factors on incident clearance time. This study follows a systematic approach incorporating the following three procedures: proportionality test, model development/estimation, and effectiveness test. Applying the proposed model to the 2009 Washington State Incident Tracking System data, five factors were found to have significant but constant (or time independent) effects on the clearance time, which is similar to the findings from previous studies. However, our model also discovered thirteen variables that have significant time-varying impacts on clearance hazard. These factors cannot be identified through the conventional methods used in most previous studies. The influential factors are investigated from both macroscopic and microscopic perspectives. The population average effect evaluation provides the macroscopic insight and benefits long-term incident management, and the time-dependent pattern identification offers microscopic and time-sequential insight and benefits the specific incident clearance process.  相似文献   

8.
Predicting the duration of traffic incidents sequentially during the incident clearance period is helpful in deploying efficient measures and minimizing traffic congestion related to such incidents. This study proposes a competing risk mixture hazard-based model to analyze the effect of various factors on traffic incident duration and predict the duration sequentially. First, topic modeling, a text analysis technique, is used to process the textual features of the traffic incident to extract time-dependent topics. Given four specific clearance methods and the uncertainty of these methods when used during traffic incidents, the proposed mixture model uses the multinomial logistic model and parametric hazard-based model to assess the influence of covariates on the probability of clearance methods and on the duration of the incident. Subsequently, the performance of estimated mixture model in sequentially predicting the incident duration is compared with that of the non-mixture model. The prediction results show that the presented mixture model outperforms the non-mixture model.  相似文献   

9.
10.
A new concept of subway station capacity (SSC) is defined according to the gathering and scattering process. A queuing network analytical model of station is created for calculating SSC, which is built by M/G/C/C state dependent queuing network and discrete time Markov chain (DTMC). Based on the definition and the analytical queuing network, a SSC optimization model is developed, whose objective function is to optimize SSC with a satisfactory rate of remaining passengers. Besides, a solution to the model is proposed integrating response surface methodology with iterative generalized expansion method (IGEM) and DTMC. A case study of Beijing Station in Beijing subway line 2 is implemented to verify the validity and practicability of the proposed methods by comparison with simulation model in different experiments. Finally, some sensitivity analysis results are provided to identify the nodes that have the greatest impact on SSC.  相似文献   

11.
The design and deployment of the majority of Management and Control Systems (MCS) for ITS involves a tedious, effort- and time-consuming manual tuning and calibration procedure not only during the initial design and deployment of the ITS but, in most cases, during its whole lifetime. Recently, we have developed and evaluated, both by means of theoretical analysis and extensive simulation experiments, a new methodology which fully automatically takes over the manual tuning and calibration procedure. Most importantly, this new methodology, called Adaptive Fine-Tuning (AFT), achieves to improve the performance of the system and compensate the effect of the continuous changes of its behavior that may be due to either internal or external factors. In this paper, we report results of implementing AFT to a real-life ITS MCS. More precisely, this paper reports and analyzes the results from implementing AFT to an urban traffic signal control application. The results from AFT real-life application demonstrate that it is capable of significantly improving the performance of the system in a safe and robust manner. Moreover, the real-life results exhibit the capability of AFT to efficiently adapt and compensate in cases of changes in the system behavior, even if these changes are significant.  相似文献   

12.
Establishing how to utilize check-in counters at airport passenger terminals efficiently is a major concern facing airport operators and airlines. Inadequate terminal capacity and the inefficient utilization of facilities such as check-in counters are major factors causing congestion and delays at airport passenger terminals. However, such delays and congestion can be reduced by increasing the efficiency of check-in counter operations, based on an understanding of passengers' airport access behaviour. This paper presents an assignment model for check-in counter operations, based on passengers' airport arrival patterns. In setting up the model, passenger surveys are used to determine when passengers arrive at the airport terminals relative to their flight departure times. The model then uses passenger arrival distribution patterns to calculate the most appropriate number of check-in counters and the duration of time that each counter should be operated. This assignment model has been applied at the Seoul Gimpo International Airport in Korea. The model provides not only a practical system for the efficient operations of time-to-time check-in counter assignments, but also a valuable means of developing effective longer-term solutions to the problem of passenger terminal congestion and delays. It also offers airlines a means of operating check-in counters with greater cost effectiveness, thus leading to enhanced customer service.  相似文献   

13.
Phone use during driving causes decrease in situation awareness and delays response to the events happening in driving environment which may lead to accidents. Reaction time is one of the most suitable parameters to measure the effect of distraction on event detection performance. Therefore, this paper reports the results of a simulator study which analysed and modelled the effects of mobile phone distraction upon reaction time of the Indian drivers belonging to three different age groups. Two different types of hazardous events: (1) pedestrian crossing event and (2) road crossing event by parked vehicles were included for measuring drivers’ reaction times. Four types of mobile phone distraction tasks: simple conversation, complex conversation, simple texting and complex texting were included in the experiment. Two Weibull AFT (Accelerated Failure Time) models were developed for the reaction times against both the events separately, by taking all the phone use conditions and various other factors (such as age, gender, and phone use habits during driving) as explanatory variables. The developed models showed that in case of pedestrian crossing event, the phone use tasks: simple conversation, complex conversation, simple texting and complex texting caused 40%, 95%, 137% and 204% increment in the reaction times and in case of road crossing event by parked vehicles, the tasks caused 48%, 65%, 121% and 171% increment in reaction times respectively. Thus all the phone use conditions proved to be the most significant factors in degrading the driving performance.  相似文献   

14.
In the urban subway transportation system, passengers may have to make at least one transfer traveling from their origin to destination. This paper proposes a timetable synchronization optimization model to optimize passengers’ waiting time while limiting the waiting time equitably over all transfer station in an urban subway network. The model aims to improve the worst transfer by adjusting the departure time, running time, the dwelling time and the headways for all directions in the subway network. In order to facilitate solution, we develop a binary variables substitute method to deal with the binary variables. Genetic algorithm is applied to solve the problem for its practicality and generality. Finally, the suggested model is applied to Beijing urban subway network and several performance indicators are presented to verify the efficiency of suggested model. Results indicate that proposed timetable synchronization optimization model can be used to improve the network performance for transfer passengers significantly.  相似文献   

15.
A simultaneous equation model is developed to describe temporal trends and shifts in demand among five modes of passenger transportation in the Netherlands. The modes are car driver, car passenger, train, bicycle, and public transit (bus, tram, and subway). The time period is one year (1984–1985). The data are from the week-long travel diaries at six-month intervals of a national panel of households in the Netherlands. The model explains the weekly trip rates for each mode in terms of three types of relationships: links from demand for the same mode at previous points in time (temporal stability or inertia); links to and from demand for other modes at the same point in time (complementarity and competition on a synchronous basis); and links from demand for other modes at previous points in time (substitution effects). a significant model is found with 15 inertial links, 21 synchronous links, and 16 cross-lag links among the variables. It is proposed in interpretations of the link coefficients and overall effects of one variable on another that relationships among the modes are evolving over time. In particular, the model captures the effect of a public transit fare increase that occurred during the time frame of the panel data.  相似文献   

16.
Work zone related traffic delay is an important cost component on freeways with maintenance activities. This study demonstrates that delays may be underestimated by using the deterministic queuing theory. Computer simulation is a valuable approach of estimating delay under a variety of existing and future conditions. However, a single simulation run, which can be quite costly in terms of both computer and analyst time, produces a delay estimate for only one traffic level under one set of conditions. A method is developed in this paper to approximate delays by integrating limited simulation data, obtained from CORSIM and the concept of deterministic queuing theory, while various geometric conditions and time‐varying traffic distribution are considered. A calibrated and validated simulation model that can reflect work zone traffic operations on a segment of Interstate 1–80 in New Jersey is used to generate data for developing the proposed model. The comparison of delays estimated by the deterministic queuing model and the proposed model is conducted, while factors affecting the accuracy of the delay estimates are discussed.  相似文献   

17.
This paper proposes a pedestrian delay model suitable for signalized intersections in developing cities, on the basis of a field study conducted in Xi’an, China. The field study consisted of two parts: Part I involved only one crosswalk, and the signal cycle was divided into 13 subphases; Part II involved 13 crosswalks, but the signal cycles were only divided into green phases and non-green phases. It was found that pedestrian arrival rates were not uniform throughout cycles; pedestrians arriving during green phases might also receive delays; pedestrian signal non-compliance was so severe that delays were greatly reduced, but non-complying pedestrians might still receive delays; and for pedestrians walking different directions, though the relationships between average delay and arrival subphase were different, the overall average delays were almost the same. On the basis of the field study results, some assumptions are made about the relationship between average pedestrian delay and arrival subphase, and a new model is developed to estimate pedestrian delays at signalized intersections. The model is validated using the field data, and the validation results indicate that in Xi’an the new model provides much more accurate estimation than the existing models.  相似文献   

18.
Improved Air Traffic Management (ATM) leading to reduced en route and gate delay, greater predictability in flight planning, and reduced terminal inefficiencies has a role to play in reducing aviation fuel consumption. Air navigation service providers are working to quantify this role to help prioritize and justify ATM modernization efforts. In the following study we analyze actual flight-level fuel consumption data reported by a major U.S. based airline to study the possible fuel savings from ATM improvements that allow flights to better adhere to their planned trajectories both en route and in the terminal area. To do so we isolate the contribution of airborne delay, departure delay, excess planned flight time, and terminal area inefficiencies on fuel consumption using econometric techniques. The model results indicate that, for two commonly operated aircraft types, the system-wide averages of flight fuel consumption attributed to ATM delay and terminal inefficiencies are 1.0–1.5% and 1.5–4.5%, respectively. We quantify the fuel impact of predicted delay to be 10–20% that of unanticipated delay, reinforcing the role of flight plan predictability in reducing fuel consumption. We rank terminal areas by quantifying a Terminal Inefficiency metric based on the variation in terminal area fuel consumed across flights. Our results help prioritize ATM modernization investments by quantifying the trade-offs in planned and unplanned delays and identifying terminal areas with high potential for improvement.  相似文献   

19.
Yap  Menno  Cats  Oded 《Transportation》2021,48(4):1703-1731

Disruptions in public transport can have major implications for passengers and service providers. Our study objective is to develop a generic approach to predict how often different disruption types occur at different stations of a public transport network, and to predict the impact related to these disruptions as measured in terms of passenger delays. We propose a supervised learning approach to perform these predictions, as this allows for predictions for individual stations for each time period, without the requirement of having sufficient empirical disruption observations available for each location and time period. This approach also enables a fast prediction of disruption impacts for a large number of disruption instances, hence addressing the computational challenges that rise when typical public transport assignment or simulation models would be used for real-world public transport networks. To improve transferability of our study results, we cluster stations based on their contribution to network vulnerability using unsupervised learning. This supports public transport agencies to apply the appropriate type of measure aimed to reduce disruptions or to mitigate disruption impacts for each station type. Applied to the Washington metro network, we predict a yearly passenger delay of 5.9 million hours for the total metro network. Based on the clustering, five different types of station are distinguished. Stations with high train frequencies and high passenger volumes located at central trunk sections of the network show to be most critical, along with start/terminal and transfer stations. Intermediate stations located at branches of a line are least critical.

  相似文献   

20.
Abstract

This paper develops a model for estimating unsignalized intersection delays which can be applied to traffic assignment (TA) models. Current unsignalized intersection delay models have been developed mostly for operational purposes, and demand detailed geometric data and complicated procedures to estimate delay. These difficulties result in unsignalized intersection delays being ignored or assumed as a constant in TA models.

Video and vehicle license plate number recognition methods are used to collect traffic volume data and to measure delays during peak and off-peak traffic periods at four unsignalized intersections in the city of Tehran, Iran. Data on geometric design elements are measured through field surveys. An empirical approach is used to develop a delay model as a function of influencing factors based on 5- and 15-min time intervals. The proposed model estimates delays on each approach based on total traffic volumes, rights-of-way of the subject approach and the intersection friction factor. The effect of conflicting traffic flows is considered implicitly by using the intersection friction factor. As a result, the developed delay model guarantees the convergence of TA solution methods.

A comparison between delay models performed using different time intervals shows that the coefficients of determination, R 2, increases from 43.2% to 63.1% as the time interval increases from 5- to 15-min. The US Highway Capacity Manual (HCM) delay model (which is widely used in Iran) is validated using the field data and it is found that it overestimates delay, especially in the high delay ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号