首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
How to manage signalized intersections under oversaturated conditions is a long-standing problem in traffic science and engineering. However, although research works in this area date back to 1960s, an on-line control strategy with theoretically bounded performance is missing, even for the control of an isolated intersection under oversaturation. This paper makes one step further in this area by proposing a QUEUE-based quasi-optimal feedback control (abbreviated as QUEUE) strategy for an isolated oversaturated intersection. The QUEUE strategy is intuitive, simple, and proved to match the off-line optimum in the case of constant demand. More importantly, the bounds of sub-optimality of the QUEUE strategy can be specified quantitatively in general piece-wise constant demand cases. To better deal with the maximum queue constraints, the oversaturation period is divided into the queuing period and the dissipation period with two different objectives. In the queuing period, the primary objective is to keep the queue length within the maximum value; but for the dissipation period, the primary objective is to eliminate all queues at the earliest time. Interestingly, we found that both control objectives can be realized with the same QUEUE strategy. Numerical examples show that the QUEUE strategy approximates the off-line optimum very well. The average sub-optimality in comparison with the off-line optimum in the challenging conditions with Poisson distributed random demand is below 5%.  相似文献   

2.
Oversaturation has become a severe problem for urban intersections, especially the bottleneck intersections that cause queue spillover and network gridlock. Further improvement of oversaturated arterial traffic using traditional mitigation strategies, which aim to improve intersection capacity by merely adjusting signal control parameters, becomes challenging since exiting strategies may (or already) have reached their “theoretical” limits of optimum. Under such circumstance, several novel unconventional intersection designs, including the well-recognized continuous flow intersection (CFI) design, are originated to improve the capacity at bottleneck intersections. However, the requirement of installing extra sub-intersections in a CFI design would increase vehicular stops and, more critically, is unacceptable in tight urban areas with closed spaced intersections. To address these issues, this research proposes a simplified continuous flow intersection (called CFI-Lite) design that is ideal for arterials with short links. It benefits from the CFI concept to enable simultaneous move of left-turn and through traffic at bottleneck intersections, but does not need installation of sub-intersections. Instead, the upstream intersection is utilized to allocate left-turn traffic to the displaced left-turn lane. It is found that the CFI-Lite design performs superiorly to the conventional design and regular CFI design in terms of bottleneck capacity. Pareto capacity improvement for every traffic stream in an arterial system can be achieved under effortless conditions. Case study using data collected at Foothill Blvd in Los Angeles, CA, shows that the new design is beneficial in more than 90% of the 408 studied cycles. The testing also shows that the average improvements of green bandwidths for the synchronized phases are significant.  相似文献   

3.
Traffic signals at intersections are an integral component of the existing transportation system and can significantly contribute to vehicular delay along urban streets. The current emphasis on the development of automated (i.e., driverless and with the ability to communicate with the infrastructure) vehicles brings at the forefront several questions related to the functionality and optimization of signal control in order to take advantage of automated vehicle capabilities. The objective of this research is to develop a signal control algorithm that allows for vehicle paths and signal control to be jointly optimized based on advanced communication technology between approaching vehicles and signal controller. The algorithm assumes that vehicle trajectories can be fully optimized, i.e., vehicles will follow the optimized paths specified by the signal controller. An optimization algorithm was developed assuming a simple intersection with two single-lane through approaches. A rolling horizon scheme was developed to implement the algorithm and to continually process newly arriving vehicles. The algorithm was coded in MATLAB and results were compared against traditional actuated signal control for a variety of demand scenarios. It was concluded that the proposed signal control optimization algorithm could reduce the ATTD by 16.2–36.9% and increase throughput by 2.7–20.2%, depending on the demand scenario.  相似文献   

4.
The average delay experienced by vehicles at a signalized intersection defines the level of service (LOS) at which the intersection operates. A major challenge in this regard is the ability to accurately estimate all the components underlying the overall control delay, including the uniform, incremental and initial queue delays. This paper tackles this challenging task by proposing a novel exact model of the uniform control delay component with a view to enhancing the accuracy of the existing approximate models, notably, the one reported in the Highway Capacity Manual 2010. Both graphical and analytical proofs are employed to derive exact closed‐form expressions for the uniform control delay at undersaturated signalized intersections. The high degree of accuracy of the proposed models is analysed through extensive simulations to demonstrate their abilities to exactly characterize the performance of real‐life intersections in terms of the resulting vehicle delay. Unlike the existing widely adopted uniform delay models, which tend to overestimate the LOS of real‐life intersections, the delay models introduced in this paper have the merit of exactly capturing such a LOS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
At two-way stop-controlled (TWSC) rural intersections, a right-turning driver who is departing the minor road may select an improper gap and subsequently may be involved in a rear-end collision with another vehicle approaching on the rightmost lane on the major road. This paper provides perceptual framework and algorithm design of a proposed infrastructure-based collision warning system that has the potential to aid unprotected right-turning drivers at TWSC rural intersections. The proposed system utilizes a radar sensor that measures the location, speed, and acceleration of the approaching vehicle on the major road. Based on these measurements, the system’s algorithm determines if there will be any potential conflict between the approaching and the turning vehicles and warns the driver of the latter vehicle if such a conflict is found. The algorithm is based on realistic acceleration profile of the turning vehicle to estimate its acceleration rates at different times so that the system can accurately estimate the time and distance needed for the departing vehicle to accelerate to the same speed as for the approaching vehicle. That realistic acceleration profile is established using actual experimental data collected by a Global Positioning System (GPS) data logger device that was used to record the positions and instantaneous speeds of different right-turning vehicles at 1-s intervals. The algorithm also gives consideration to the time needed by the driver of the departing vehicle to perceive the message displayed by the system and react to it (to start departure) where it was found that 95% of drivers have a perception–reaction time of 1.89 s or less. A methodology is also illustrated to select the maximum measurement errors suggested for the detectors in measuring the locations of the approaching vehicle on the major road where it was found that the accuracy of the system significantly deteriorates if the errors in measuring the distance and the azimuth angle exceed 0.1 m and 0.2°, respectively. An application example is provided to illustrate the algorithm used by the proposed system.  相似文献   

6.
With increasing attention being paid to greenhouse gas (GHG) emissions, the transportation industry has become an important focus of approaches to reduce GHG emissions, especially carbon dioxide equivalent (CO2e) emissions. In this competitive industry, of course, any new emissions reduction technique must be economically attractive and contribute to good operational performance. In this paper, a continuous-variable feedback control algorithm called GEET (Greening via Energy and Emissions in Transportation) is developed; customer deliveries are assigned to a fleet of vehicles with the objective function of Just-in-Time (JIT) delivery and fuel performance metrics akin to the vehicle routing problem with soft time windows (VRPSTW). GEET simultaneously determines vehicle routing and sets cruising speeds that can be either fixed for the entire trip or varied dynamically based on anticipated performance. Dynamic models for controlling vehicle cruising speed and departure times are proposed, and the impact of cruising speed on JIT performance and fuel performance are evaluated. Allowing GEET to vary cruising speed is found to produce an average of 12.0–16.0% better performance in fuel cost, and −36.0% to +16.0% discrepancy in the overall transportation cost as compared to the Adaptive Large Neighborhood Search (ALNS) heuristic for a set of benchmark problems. GEET offers the advantage of extremely fast computational times, which is a substantial strength, especially in a dynamic transportation environment.  相似文献   

7.
In this paper, a model predictive control approach for improving the efficiency of bicycling as part of intermodal transportation systems is proposed. Considering a dedicated bicycle lanes infrastructure, the focus in this paper is to optimize the dynamic interaction between bicycles and vehicles at the multimodal urban traffic intersections. In the proposed approach, a dynamic model for the flows, queues, and number of both vehicles and bicycles is explicitly incorporated in the controller. For obtaining a good trade-off between the total time spent by the cyclists and by the drivers, a Pareto analysis is proposed to adjust the objective function of the MPC controller. Simulation results for a two-intersections urban traffic network are presented and the controller is analyzed considering different methods of including in the MPC controller the inflow demands of both vehicles and bicycles.  相似文献   

8.
The following paper presents a dynamic macroscopic model for unsignalized intersections which accounts for time-limited disruptions in the minor stream flow, even in free-flow conditions when the average flow demand is satisfied. It introduces a deterministic fictive traffic light to represent an average alternating sequence of available and busy time periods for insertion depending on the major stream flow. Two allocation schemes of the total outflow during green periods are developed to model the influence or non-influence of the minor stream over the major stream flow. The aggregation of the resulting dynamic flow variations gives relevant capacity values. Moreover, the model predicts accurate average vehicle delay and queue length estimates compared to theoretical and empirical data. It has three easy-to-measure parameters and can be integrated into a dynamic macroscopic simulation tool for urban networks.  相似文献   

9.
The turning behavior is one of the most challenging driving maneuvers under non-protected phase at mixed-flow intersections. Currently, one-dimensional simulation models focus on car-following and gap-acceptance behaviors in pre-defined lanes with few lane-changing behaviors, and they cannot model the lateral and longitudinal behaviors simultaneously, which has limitation in representing the realistic turning behavior. This paper proposes a three-layered “plan-decision-action” (PDA) framework to obtain acceleration and angular velocity in the turning process. The plan layer firstly calculates the two-dimensional optimal path and dynamically adjusts the trajectories according to interacting objects. The decision layer then uses the decision tree method to select a suitable behavior in three alternatives: car-following, turning and yielding. Finally, in the action layer, a set of corresponding operational models specify the decided behavior into control parameters. The proposed model is tested by reproducing 210 trajectories of left-turn vehicles at a two-phase mixed-flow intersection in Shanghai. As a result, the simulation reproduces the variation of trajectories, while the coverage rate of the trajectories is 88.8%. Meanwhile, both the travel time and post-encroachment time of simulation and empirical turning vehicles are similar and do not show statistically significant difference.  相似文献   

10.
Traffic movement conflict points at intersections are the points at which traffic movements intersect (including crossing, merging, and diverging). Numbers and distribution of different types of conflict points are used to evaluate intersection access management designs and safety performance. Traditionally, the determination of the numbers of conflict points for different traffic movements is based on manual methods, which causes the difficulty for computerized procedures to evaluate safety performance of different access management designs. Sometimes, a programmable calculation procedure may provide more effective solutions as compared with manual methods. This paper presents a programmable calculation procedure for the determination of the numbers of conflict points, which could be used as a basis for a computerized procedure. Concepts of virtual movement lanes and intersection quadrants are introduced to specify types of intersections, traffic lane configurations, and traffic movement regulations. Calculation models, based on such concepts, for traffic movement conflict points at signalized and unsignalized intersections can be obtained. In support of the procedure, case studies are presented in the paper. The procedure presented in the paper can be programmed into a computer program for the purpose of a computerized evaluation of intersection safety and design performance of different access management or control approaches. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Ramp metering (RM) is the most direct and efficient tool for the motorway traffic flow management. However, because of the usually short length of the on-ramps, RM is typically deactivated to avoid interference of the created ramp queue with adjacent street traffic. By the integration of local RM with mainstream traffic flow control (MTFC) enabled via variable speed limits (VSL), control operation upstream of active bottlenecks could be continued even if the on-ramp is full or if the RM lower bound has been reached. Such integration is proposed via the extension of an existing local cascade feedback controller for MTFC-VSL by use of a split-range-like scheme that allows different control periods for RM and MTFC-VSL. The new integrated controller remains simple yet efficient and suitable for field implementation. The controller is evaluated in simulation for a real motorway infrastructure (a ring-road) fed with real (measured) demands and compared to stand-alone RM or MTFC-VSL, both with feedback and optimal control results. The controller’s performance is shown to meet the specifications and to approach the optimal control results for the investigated scenario.  相似文献   

12.
A novel approach is presented in which signalized intersections are treated as normal highway bottlenecks for improved computational efficiency. It is unique in two ways. First, it treats the signalized intersections as common freeway bottlenecks by a reversed cause and effect modeling approach. Both traffic arrivals and departures are modeled by smooth continuous functions of time as if there were no interruptions to traffic flows from signals. The use of smooth continuous functions for departure curves instead of commonly used step functions makes it easy to apply differential calculus in optimization and future extension to a system of intersections. Second, a dynamic linear programming (LP) model is then developed to maximize the total vehicular output from the intersection during the entire period of congestion subject to prevailing capacity and other operational constraints. The continuous optimal departure flow rate (the effect) is then converted to signal timing parameters (the cause) that can be readily implemented. Two numerical examples are presented to demonstrate the properties of the proposed algorithm and examine its performance.  相似文献   

13.
The benefit of eco-driving of electric vehicles (EVs) has been studied with the promising connected vehicle (i.e. V2X) technology in recent years. Whereas, it is still in doubt that how traffic signal control affects EV energy consumption. Therefore, it is necessary to explore the interactions between the traffic signal control and EV energy consumption. This research aims at studying the energy efficiency and traffic mobility of the EV system under V2X environment. An optimization model is proposed to meet both operation and energy efficiency for an EV transportation system with both connected EVs (CEVs) and non-CEVs. For CEVs, a stage-wise approximation model is implemented to provide an optimal speed control strategy. Non-CEVs obey a car-following rule suggested by the well-known Intelligent Driver Model (IDM) to achieve eco-driving. The eco-driving EV system is then integrated with signal control and a bi-objective and multi-stage optimization problem is formulated. For such a large-scale problem, a hybrid intelligent algorithm merging genetic algorithm (GA) and particle swarm optimization (PSO) is implemented. At last, a validation case is performed on an arterial with four intersections with different traffic demands. Results show that cycle-based signal control could improve both traffic mobility and energy saving of the EV system with eco-driving compared to a fixed signal timing plan. The total consumed energy decreases as the CEV penetration rate augments in general.  相似文献   

14.
Despite extensive studies have been reported to address the operational issues of full Continuous Flow Intersection (CFI) in the literature, the asymmetric two-leg CFI, which is more applicable in practice, has not received adequate attentions yet. To satisfy such need, this study develops two signal optimization models for asymmetric CFI based on its unique geometric features. The first proposed model, following a two-step procedure, determines the cycle length, phase design and sequence, and green split in the first step and optimizes intersection offset in the second step. To benefit both intersections’ capacity maximization and signal progression design by optimizing phase plan and sequence, the second proposed model takes the Mixed-Integer-Linear-Programming (MILP) technique to concurrently optimize all signal control variables. With extensive case studies on a field site in Maryland, the simulation results prove that the proposed models can effectively provide signal progression to critical path-flows and prevent the potential queue spillover on the short turning bays/links. Further comparisons between the two proposed models reveal that the second model is more flexible in designing phase plan but the first model performs better in reducing link queue length.  相似文献   

15.
Work zones on motorways necessitate the drop of one or more lanes which may lead to significant reduction of traffic flow capacity and efficiency, traffic flow disruptions, congestion creation, and increased accident risk. Real-time traffic control by use of green–red traffic signals at the motorway mainstream is proposed in order to achieve safer merging of vehicles entering the work zone and, at the same time, maximize throughput and reduce travel delays. A significant issue that had been neglected in previous research is the investigation of the impact of distance between the merge area and the traffic lights so as to achieve, in combination with the employed real-time traffic control strategy, the most efficient merging of vehicles. The control strategy applied for real-time signal operation is based on an ALINEA-like proportional–integral (PI-type) feedback regulator. In order to achieve maximum performance of the control strategy, some calibration of the regulator’s parameters may be necessary. The calibration is first conducted manually, via a typical trial-and-error procedure. In an additional investigation, the recently proposed learning/adaptive fine-tuning (AFT) algorithm is employed in order to automatically fine-tune the regulator parameters. Experiments conducted with a microscopic simulator for a hypothetical work zone infrastructure, demonstrate the potential high benefits of the control scheme.  相似文献   

16.
The optimization of traffic signalization in urban areas is formulated as a problem of finding the cycle length, the green times and the offset of traffic signals that minimize an objective function of performance indices. Typical approaches to this optimization problem include the maximization of traffic throughput or the minimization of vehicles’ delays, number of stops, fuel consumption, etc. Dynamic Traffic Assignment (DTA) models are widely used for online and offline applications for efficient deployment of traffic control strategies and the evaluation of traffic management schemes and policies. We propose an optimization method for combining dynamic traffic assignment and network control by minimizing the risk of potential loss induced to travelers by exceeding their budgeted travel time as a result of deployed traffic signal settings, using the Conditional Value-at-Risk model. The proposed methodology can be easily implemented by researchers or practitioners to evaluate their alternative strategies and aid them to choose the alternative with less potential risk. The traffic signal optimization procedure is implemented in TRANSYT-7F and the dynamic propagation and route choice of vehicles is simulated with a mesoscopic dynamic traffic assignment tool (DTALite) with fixed temporal demand and network characteristics. The proposed approach is applied to a reference test network used by many researchers for verification purposes. Numerical experiments provide evidence of the advantages of this optimization method with respect to conventional optimization techniques. The overall benefit to the performance of the network is evaluated with a Conditional Value-at-Risk Analysis where the optimal solution is the one presenting the least risk for ‘guaranteed’ total travel times.  相似文献   

17.
18.
This paper presents a probabilistic delay model for signalized intersections with right‐turn channelization lanes considering the possibility of blockage. Right‐turn channelization is used to improve the capacity and to reduce delay at busy intersections with a lot of right‐turns. However, under heavy traffic conditions the through vehicles will likely block the channelization entrance that accrues delay to right‐turn vehicles. If the right‐turn channelization gets blocked frequently, its advantage in reducing the intersection delay is neglected and as a result the channelization lane becomes inefficient and redundant. The Highway Capacity Manual (HCM) neglects the blockage effect, which may be a reason for low efficiency during peak hours. More importantly, using HCM or other standard traffic control methods without considering the blockage effects would lead to underestimation of the delay. To overcome this issue, the authors proposed delay models by taking into account both deterministic and random aspects of vehicles arrival patterns at signalized intersections. The proposed delay model was validated through VISSIM, a microscopic simulation model. The results showed that the proposed model is very precise and accurately estimates the delay. In addition, it was found that the length of short‐lane section and proportion of right‐turn and through traffic significantly influence the approach delay. For operational purposes, the authors provided a step‐by‐step delay calculation process and presented approach delay estimates for different sets of traffic volumes, signal settings, and short‐lane section lengths. The delay estimates would be useful in evaluating adequacy of the current lengths, identifying the options of extending the short‐lane section length, or changing signal timing to reduce the likelihood of blockage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
This paper describes a real-time knowledge-based system (KBS) for decision support to Traffic Operation Center personnel in the selection of integrated traffic control plans after the occurrence of non-recurring congestion, on freeway and arterial networks. The uniqueness of the system, called TCM, lies in its ability to cooperate with the operator, by handling different sources of input data and inferred knowledge, and providing an explanation of its reasoning process. A data fusion algorithm for the analysis of congestion allows to represent and interpret different types of data, with various levels of reliability and uncertainty, to provide a clear assessment of traffic conditions. An efficient algorithm for the selection of control plans determines alternative traffic control responses. These are proposed to an operator, along with an explanation of the reasoning process that led to their development and an estimation of their expected effect on traffic. The validation of the system, which is one of only few examples of validation of a KBS in transportation, demonstrates the validity of the approach. The evaluation results, in a simulated environment demonstrate the ability of TCM to reduce congestion, through the formulation of traffic diversion and control schemes.  相似文献   

20.
This Taiwan traffic‐adaptive arterial signal control model borrowed its traffic flow framework mainly from a British traffic‐adaptive control model with a cyclic traffic progression function, i.e. SCOOT (Split Cycle Office Optimisation Technique). The new arterial control model can take into account delays of both major and minor streets and make real‐time signal timing decisions with optimal two‐way signal offsets, so as to create the best arterial signal operation performance. It has been developed to be an online real‐time software for both simulation testing and field validation. Through simulation, it was found that the performance when operating this newly developed real‐time arterial traffic‐adaptive model was significantly better than when using the optimal fixed‐time arterial timing plan. On the aspect of field testing, three signalized intersections located in East District, Tainan City, Taiwan were selected to be the test sites. Fairly good traffic control performance has been demonstrated in that it can effectively reduce travel delays of the control arterial as a whole. Additional discussions about how to combine travel delay and the total number of vehicle stops into a new control performance index have also been included to make the new traffic‐adaptive model more flexible and reasonable to meet the expectations of different driver groups in the arterial system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号