首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The Container Loading Problem (CLP) literature has traditionally guaranteed cargo static stability by imposing the full support constraint for the base of the box. Used as a proxy for real-world static stability, this constraint excessively restricts the container space utilization and has conditioned the algorithms developed for this problem. In this paper we propose a container loading algorithm with static stability constraints based on the static mechanical equilibrium conditions applied to rigid bodies, which derive from Newton’s laws of motion. The algorithm is a multi-population biased random-key genetic algorithm, with a new placement procedure that uses the maximal-spaces representation to manage empty spaces, and a layer building strategy to fill the maximal-spaces. The new static stability criterion is embedded in the placement procedure and in the evaluation function of the algorithm. The new algorithm is extensively tested on well-known literature benchmark instances using three variants: no stability constraint, the classical full base support constraint and with the new static stability constraint—a comparison is then made with the state-of-the-art algorithms for the CLP. The computational experiments show that by using the new stability criterion it is always possible to achieve a higher percentage of space utilization than with the classical full base support constraint, for all classes of problems, while still guaranteeing static stability. Moreover, for highly heterogeneous cargo the new algorithm with full base support constraint outperforms the other literature approaches, improving the best solutions known for these classes of problems.  相似文献   

2.
The container cargo proportion of total maritime transport increased from 3% in 1980 to 16% in 2011. The largest Brazilian port, the port of Santos, is the 42nd largest container port in the world. However, Santos’ performance indicators are much lower than those of the world’s largest ports, so comparisons with them are difficult. This article focuses on the Brazilian container terminals that handled containers in 2009 and compares port competitiveness. This study classified seventeen Brazilian container terminals into three distinct groups based on the following competitiveness criteria: number of containers handled, berth length, number of berths, terminal tariffs (in US$), berth depth, rate of medium consignment (in containers/ship), medium board (containers/hour), average waiting time for mooring (in hours/ship), and average waiting time for load or unload cargo (in hours/ship). This classification used a hierarchical cluster analysis. The classification shows that the terminal of Tecon in the port of Santos has the best performance of all, while small terminals (<150,000 container units) are the worst performing terminals in Brazil.  相似文献   

3.
Abstract

This paper explores the external costs of domestic container transportation in Taiwan by analysing the origin and destination of current container cargoes. After reviewing an extensive literature survey of methods of external cost, a comparison of external costs between trucking and short sea shipping (SSS) by corridor is made by using a model developed in this paper. Based on the findings that external costs of SSS are considerably lower than truck transport and can be a viable alternative to current domestic container cargo transportation, we discuss the significance and managerial implications of SSS from the perspective of green logistics. In so doing, a top‐down approach is employed for developing government policies, which aim to not only reduce the external costs of domestic container transportation but also promote SSS in Taiwan.  相似文献   

4.
This paper proposes a state-augmented shipping (SAS) network framework to integrate various activities in liner container shipping chain, including container loading/unloading, transshipment, dwelling at visited ports, in-transit waiting and in-sea transport process. Based on the SAS network framework, we develop a chance-constrained optimization model for a joint cargo assignment problem. The model attempts to maximize the carrier’s profit by simultaneously determining optimal ship fleet capacity setting, ship route schedules and cargo allocation scheme. With a few disparities from previous studies, we take into account two differentiated container demands: deterministic contracted basis demand received from large manufacturers and uncertain spot demand collected from the spot market. The economies of scale of ship size are incorporated to examine the scaling effect of ship capacity setting in the cargo assignment problem. Meanwhile, the schedule coordination strategy is introduced to measure the in-transit waiting time and resultant storage cost. Through two numerical studies, it is demonstrated that the proposed chance-constrained joint optimization model can characterize the impact of carrier’s risk preference on decisions of the container cargo assignment. Moreover, considering the scaling effect of large ships can alleviate the concern of cargo overload rejection and consequently help carriers make more promising ship deployment schemes.  相似文献   

5.
Straddle carriers represent a critical resource in the handling of containers within a container terminal. It is essential that they are deployed in an as efficient manner as possible. The research presented in this paper is motivated by the need to critically evaluate job assignment rules for straddle carriers that operate in a multiple straddle environment. This is achieved by developing a discrete event simulation model using industrial simulation software to model a container terminal located in Melbourne, Australia. The model accounts for variables such as the number of straddle carriers needed, the speed of straddle carriers, the arrival rate of trucks, and the job assignment rule. A principal finding of the study is that increasing the number of straddles in the present set‐up from 6 to 7 has a negligible effect on daily throughput. However, an increase in the number of straddles to 7 is expected to have a profound effect on reducing the average waiting time of trucks within the terminal from over 16 minutes to under 9 minutes, a decrease of 46.5%. However, a further increase in the number of straddles results in no further increase in daily throughput. It was observed that the throughput of the terminal is very sensitive to the speeds at which straddles travel. The management of the terminal has proposed a new heuristic job assignment rule for straddles, because the present rule does not assign the jobs to straddles closest to the truck requesting to load or unload a container. As a result a new heuristic job assignment rule was tested. The simulation results revealed that both the old and new rules performed equally well using performance indicators such as average container flow time, daily throughput, average waiting time of jobs, number of jobs in the queue, and straddle utilisation. Therefore, the new rule will not improve these performance measures if implemented  相似文献   

6.
This study employs a green container terminal perspective to compare the performance of four types of cargo handling equipment used in container yards – automatic rail, rail, electric tire, and tire transtainers – based on working efficiency, energy saving performance, and carbon reductions. It is found that automatic rail and electric tire transtainers are the optimal types of green cargo handling equipment.  相似文献   

7.
With increasing attention being paid to greenhouse gas (GHG) emissions, the transportation industry has become an important focus of approaches to reduce GHG emissions, especially carbon dioxide equivalent (CO2e) emissions. In this competitive industry, of course, any new emissions reduction technique must be economically attractive and contribute to good operational performance. In this paper, a continuous-variable feedback control algorithm called GEET (Greening via Energy and Emissions in Transportation) is developed; customer deliveries are assigned to a fleet of vehicles with the objective function of Just-in-Time (JIT) delivery and fuel performance metrics akin to the vehicle routing problem with soft time windows (VRPSTW). GEET simultaneously determines vehicle routing and sets cruising speeds that can be either fixed for the entire trip or varied dynamically based on anticipated performance. Dynamic models for controlling vehicle cruising speed and departure times are proposed, and the impact of cruising speed on JIT performance and fuel performance are evaluated. Allowing GEET to vary cruising speed is found to produce an average of 12.0–16.0% better performance in fuel cost, and −36.0% to +16.0% discrepancy in the overall transportation cost as compared to the Adaptive Large Neighborhood Search (ALNS) heuristic for a set of benchmark problems. GEET offers the advantage of extremely fast computational times, which is a substantial strength, especially in a dynamic transportation environment.  相似文献   

8.
The explosive growth in the freight volumes has put a lot of pressure on seaport authorities to find better ways of doing daily operations in order to improve the performance and to cope with avalanches of containers processing at container terminals. Advanced technologies, and in particular automated guided vehicle systems (AGVS), have been recently proposed as possible candidates for improving the terminal’s efficiency not only due to their abilities of significantly improving the performance but also to the repetitive nature of operations in container terminals. The deployment of AGVS may not be as effective as expected if the container terminal suffers from a poor layout. In this paper, simulation models are developed and used to demonstrate the impact of automation and terminal layout on terminal performance. In particular, two terminals with different but commonly used yard configurations are considered for automation using AGVS. A multi attribute decision making (MADM) method is used to assess the performance of the two terminals and determine the optimal number of deployed automated guided vehicles (AGVs) in each terminal. The simulation results demonstrate that substantial performance can be gained using AGVS. Furthermore, the yard layout has an effect on the number of AGVs used and on performance.  相似文献   

9.
This paper describes a computationally efficient parallel-computing framework for mesoscopic transportation simulation on large-scale networks. By introducing an overall data structure for mesoscopic dynamic transportation simulation, we discuss a set of implementation issues for enabling flexible parallel computing on a multi-core shared memory architecture. First, we embed an event-based simulation logic to implement a simplified kinematic wave model and reduce simulation overhead. Second, we present a space-time-event computing framework to decompose simulation steps to reduce communication overhead in parallel execution and an OpenMP-based space-time-processor implementation method that is used to automate task partition tasks. According to the spatial and temporal attributes, various types of simulation events are mapped to independent logical processes that can concurrently execute their procedures while maintaining good load balance. We propose a synchronous space-parallel simulation strategy to dynamically assign the logical processes to different threads. The proposed method is then applied to simulate large-scale, real-world networks to examine the computational efficiency under different numbers of CPU threads. Numerical experiments demonstrate that the implemented parallel computing algorithm can significantly improve the computational efficiency and it can reach up to a speedup of 10 on a workstation with 32 computing threads.  相似文献   

10.
Abstract

The European railway market has gone through a period of liberalization over the last two decades. The liberalization of the railway market has also affected port-related railway transport. Efficient port-related transport chains are key in the competition among ports, however providing this efficiency is to a large extent a coordination challenge. Many forms of coordination are needed to ensure that the railway chain operates efficiently, including the bundling of cargo, and good organization between railway companies, terminal operators and the infrastructure managers to realize an efficient use of assets. From the literature, it appears that less attention has been paid to the economic organization of port-related railway transport in general, and specifically in the new liberalized institutional environment. The goal of this paper is to come up with a framework to better understand the issue of coordination in port-related railway chains in a liberalized institutional environment. This paper presents a conceptual framework rooted in Transaction Cost Economics (TCE). Based on an in-depth study into coordination in liberalized container railway market at the Port of Rotterdam, empirical illustrations are used to adjust the TCE approach toward a dynamic model influenced by Douglas North's theory on economic and institutional change. Empirics from the port of Rotterdam show that new players have entered the railway market and their role has changed. This paper shows that coordination of railway operations has become more complex after the regime change. From a port perspective, liberalization does not lead to an optimal allocation of resources in a process that is highly operationally interdependent. In the liberalized environment, coordination arrangements are necessary to enable efficient coordination of railway operations in Rotterdam.  相似文献   

11.
With the advent of emerging wireless communication technologies, tremendous efforts have been put on promoting the safety and efficiency of transportation services by developing innovative applications. In particular, there has been significant interest in accessing information stored at RSUs (Roadside Units). The unique characteristics in vehicular networks, such as dynamic traffic factors including vehicle arrival rate, dwell time and data access patterns, bring us new challenges on data dissemination. This work dedicates to the investigation of timely and adaptive data dissemination in the dynamically changing traffic environment. Firstly, we derive an analytical model to explore and examine the effects of the dynamic traffic factors. In light of the theoretical results, an on-line scheduling algorithm is proposed for adaptive data dissemination. Finally, we evaluate performance of the new algorithm in a variety of circumstances. The simulation results demonstrate satisfactory performance of the proposed algorithm.  相似文献   

12.
Port carbon dioxide (CO2) emissions in China have become an ever-increasing public concern due to their significant impacts on human health and the environment. However, existing studies focus mainly on CO2 emissions from vessels calling at the ports and cargo handling within the ports, paying little attention to the inland distribution networks. To fill this gap, this paper proposes an easily implemented method for calculating CO2 emissions from port container distribution (PCD) and investigates their spatial characteristics and driving factors. By analyzing 30 container ports in China, the main findings are as follows. First, road transportation is the major contributor of CO2 emissions from PCD due to the lack of rail and inland water transportation. Second, PCD carbon emissions exhibit significant local spatial clustering. That is, ports with similar geographical locations tend to present a similar pattern of PCD carbon emissions. Third, as suggested by the spatial Durbin model, PCD carbon emissions are negatively determined by local gross domestic product, number of port berths, but are positively determined by local tertiary industry value and highway freight volume, and waterway freight volume in both local and neighboring ports. These results provide empirical insights into cross-port collaboration in reducing PCD carbon emissions.  相似文献   

13.
This paper investigates intermodal freight transport planning problems among deep-sea terminals and inland terminals in hinterland haulage for a horizontally fully integrated intermodal freight transport operator at the tactical container flow level. An intermodal freight transport network (IFTN) model is first developed to capture the key characteristics of intermodal freight transport such as the modality change phenomena at intermodal terminals, physical capacity constraints of the network, time-dependent transport times on freeways, and time schedules for trains and barges. After that, the intermodal freight transport planning problem is formulated as an optimal intermodal container flow control problem from a system and control perspective with the use of the proposed IFTN model. To deal with the dynamic transport demands and dynamic traffic conditions in the IFTN, a receding horizon intermodal container flow control (RIFC) approach is proposed to control and to reassign intermodal container flows in a receding horizon way. This container flow control approach involves solving linear programming problems and is suited for transport planning on large-sized networks. Both an all-or-nothing approach and the proposed RIFC approach are evaluated through simulation studies. Simulation results show the potential of the proposed RIFC approach.  相似文献   

14.
Abstract

In this article, a cargo container loading plan model is developed based on the operations of FedEx, the international air express carrier. The objective is to minimize total container handling cost, subject to related operating constraints. The model is expected to be a useful planning tool whereby international air express carriers such as FedEx can decide on container loading plans that will lead to lower operating costs, thus enhancing profits and market competitiveness. The model is formulated as a non-linear mixed integer program that is characterized as NP-hard. A solution method is then developed, with the use of the mathematical programming solver, CPLEX, to solve the problem efficiently. To evaluate the model and the solution method, we perform a case study using data from FedEx. The preliminary results indicate that the model and the solution method are both efficient and effective.  相似文献   

15.
Arrival processes are important inputs to many transportation system functions, such as vehicle prepositioning, taxi dispatch, bus holding strategies, and dynamic pricing. We conduct a comprehensive survey of the literature which shows that many transport systems employ basic homogeneous arrival process models or static nonhomogeneous processes. We conduct an empirical experiment to compare five state of the art arrival process short term prediction models using a common transportation system data set: New York taxi passenger pickups in 2013. Pickup data is split between 672 observations for model estimation and 96 observations for validation. From our experiment, we obtain evidence to support a recent model called FM‐IntGARCH, which is able to combine the benefits of both time series models and discrete count processes. Using a set of seven performance metrics from the literature, FM‐IntGARCH is shown to outperform the offline models—seasonal factor method, piecewise linear model—as well as the online models—ARIMA, Gaussian Cox process. Implications for operating data‐driven “smart” transit systems and urban informatics are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we study the impact of using a new intelligent vehicle technology on the performance and total cost of a European port, in comparison with existing vehicle systems like trucks. Intelligent autonomous vehicles (IAVs) are a new type of automated guided vehicles (AGVs) with better maneuverability and a special ability to pick up/drop off containers by themselves. To identify the most economical fleet size for each type of vehicle to satisfy the port’s performance target, and also to compare their impact on the performance/cost of container terminals, we developed a discrete-event simulation model to simulate all port activities in micro-level (low-level) details. We also developed a cost model to investigate the present values of using two types of vehicle, given the identified fleet size. Results of using the different types of vehicles are then compared based on the given performance measures such as the quay crane net moves per hour and average total discharging/loading time at berth. Besides successfully identifying the optimal fleet size for each type of vehicle, simulation results reveal two findings: first, even when not utilising their ability to pick up/drop off containers, the IAVs still have similar efficacy to regular trucks thanks to their better maneuverability. Second, enabling IAVs’ ability to pick up/drop off containers significantly improves the port performance. Given the best configuration and fleet size as identified by the simulation, we use the developed cost model to estimate the total cost needed for each type of vehicle to meet the performance target. Finally, we study the performance of the case study port with advanced real-time vehicle dispatching/scheduling and container placement strategies. This study reveals that the case study port can greatly benefit from upgrading its current vehicle dispatching/scheduling strategy to a more advanced one.  相似文献   

17.
Freight transportation by truck, train, and ship accounts for 5% of the United States’ annual energy consumption (U.S. Energy Information Administration, 2017a). Much of this freight is transported in shipping containers. Lightweighting containers is an unexplored strategy to decrease energy and GHG emissions. We evaluate life cycle fuel savings and environmental performance of lightweighting scenarios applied to a forty-foot (12.2 meters) container transported by ship, train, and truck. Use phase burdens for both conventional and lightweighted containers (steel reduction, substitution with aluminum, or substitution with high tensile steel) were compared to life cycle burdens. The study scope ranged from the transportation of one container 100 km to the lifetime movement of the global container fleet on ships. Case studies demonstrated the impact of lightweighting on typical multimodal freight deliveries to the United States. GREET 1 and 2 (Argonne National Laboratory, 2016a,b) were used to estimate the total fuel cycle burdens associated with use phase fuel consumption. Fuel consumption was determined using modal Fuel Reduction Values (FRV), which relate mass reduction to fuel reduction. A lifetime reduction of 21% in the fuel required to transport a container, and 1.4% in the total fuel required to move the vehicles, cargo, and containers can be achieved. It was determined that a 10% reduction in mass of the system will result in a fuel reduction ranging from 2% to 8.4%, depending on the mode. Globally, container lightweighting can reduce energy demand by 3.6 EJ and GHG emissions by 300 million tonnes CO2e over a 15-year lifetime.  相似文献   

18.
Emerging transportation network services, such as customized buses, hold the promise of expanding overall traveler accessibility in congested metropolitan areas. A number of internet-based customized bus services have been planned and deployed for major origin-destination (OD) pairs to/from inner cities with limited physical road infrastructure. In this research, we aim to develop a joint optimization model for addressing a number of practical challenges for providing flexible public transportation services. First, how to maintain minimum loading rate requirements and increase the number of customers per bus for the bus operators to reach long-term profitability. Second, how to optimize detailed bus routing and timetabling plans to satisfy a wide range of specific user constraints, such as passengers’ pickup and delivery locations with preferred time windows, through flexible decision for matching passengers to bus routes. From a space-time network modeling perspective, this paper develops a multi-commodity network flow-based optimization model to formulate a customized bus service network design problem so as to optimize the utilization of the vehicle capacity while satisfying individual demand requests defined through space-time windows. We further develop a solution algorithm based on the Lagrangian decomposition for the primal problem and a space-time prism based method to reduce the solution search space. Case studies using both the illustrative and real-world large-scale transportation networks are conducted to demonstrate the effectiveness of the proposed algorithm and its sensitivity under different practical operating conditions.  相似文献   

19.
This paper presents a system dynamics approach to simultaneous land use/transportation system performance modeling. A model is designed based on the causality functions and feedback loop structure between a large number of physical, socioeconomic, and policy variables. The model system consists of 7 sub‐models: population, migration of population, household, job growth‐employment‐land availability, housing development, travel demand, and traffic congestion level. The model is formulated in DYNAMO simulation language, and tested on a data set from Montgomery County, MD. In Part I: Methodology, the overall approach and the structure of the model system is discussed and the causal‐loop diagrams and major equations are presented. In Part II: Application, the model is calibrated and tested with data from Montgomery County, MD. Least square method and overall system behavior are used to estimate the model parameters. The model is fitted with the 1970–80 data and validated with the 1980–1990 data. Robustness and sensitivities with respect to input parameters such as birth rate or regional economy growth are analyzed. The model performance as a policy analysis tool is also examined by predicting the year by year impacts of highway capacity expansion on land use and transportation system performance. While this is a first attempt in using dynamic system simulation modeling in simultaneous treatment of land use and transportation system interactions, and model development and application are limited to some extent due to data availability, the results clearly indicate that the proposed method is a promising approach in dealing with complex urban land use/transportation modeling  相似文献   

20.
This paper presents a system dynamics approach to simultaneous land use/transportation system performance modeling. A model is designed based on the causality functions and feedback loop structure between a large number of physical, socioeconomic, and policy variables. The model consists of 7 sub‐models: population, migration of population, household, job growth‐employment‐land availability, housing development, travel demand, and traffic congestion level. The model is formulated in DYNAMO simulation language, and tested on a data set from Montgomery County, MD. In Part I: Methodology, the overall approach and the structure of the model system is discussed and the causal‐loop diagrams and major equations are presented. In Part II: Application, the model is calibrated and tested with data from Montgomery County, MD. Least square method and overall system behavior are used to estimate the model parameters. The model is fitted with the 1970–80 data and validated with the 1980–1990 data. Robustness and sensitivities with respect to input parameters such as birth rate or regional economy growth are analyzed. The model performance as a policy analysis tool is examined by predicting the year by year impacts of highway capacity expansion on land use and transportation system performance. While this is a first attempt in using dynamic system simulation modeling in simultaneous treatment of land use and transportation system interactions, and model development and application are limited due to data availability, the results indicate that the proposed method is a promising approach in dealing with complex urban land use/transportation modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号