首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

To build a traffic safety feature model and to quantify accident influences caused by some traffic violation behaviors of drivers, an accident diagnostic decision-making model is established. For the purpose of diagnosing accident morphologies, rough set theory is applied and the influence of traffic factors of different accident morphologies is quantified through calculating the degree of attribute importance, selecting core traffic factors and adopting a C4.5 decision tree algorithm. In the paper, road traffic accident data from 2008 to 2013 in Anhui Province are used. Typical rules are selected, targeted strategy proposals are put forward, and then, a scientific and reasonable diagnostic basis is provided for the diagnosis of traffic safety risks and the prediction of potential traffic accidents.  相似文献   

2.
Big data from floating cars supply a frequent, ubiquitous sampling of traffic conditions on the road network and provide great opportunities for enhanced short-term traffic predictions based on real-time information on the whole network. Two network-based machine learning models, a Bayesian network and a neural network, are formulated with a double star framework that reflects time and space correlation among traffic variables and because of its modular structure is suitable for an automatic implementation on large road networks. Among different mono-dimensional time-series models, a seasonal autoregressive moving average model (SARMA) is selected for comparison. The time-series model is also used in a hybrid modeling framework to provide the Bayesian network with an a priori estimation of the predicted speed, which is then corrected exploiting the information collected on other links. A large floating car data set on a sub-area of the road network of Rome is used for validation. To account for the variable accuracy of the speed estimated from floating car data, a new error indicator is introduced that relates accuracy of prediction to accuracy of measure. Validation results highlighted that the spatial architecture of the Bayesian network is advantageous in standard conditions, where a priori knowledge is more significant, while mono-dimensional time series revealed to be more valuable in the few cases of non-recurrent congestion conditions observed in the data set. The results obtained suggested introducing a supervisor framework that selects the most suitable prediction depending on the detected traffic regimes.  相似文献   

3.
The k-nearest neighbor (KNN) model is an effective statistical model applied in short-term traffic forecasting that can provide reliable data to guide travelers. This study proposes an improved KNN model to enhance forecasting accuracy based on spatiotemporal correlation and to achieve multistep forecasting. The physical distances among road segments are replaced with equivalent distances, which are defined by the static and dynamic data collected from real road networks. The traffic state of a road segment is described by a spatiotemporal state matrix instead of only a time series as in the original KNN model. The nearest neighbors are selected according to the Gaussian weighted Euclidean distance, which adjusts the influences of time and space factors on spatiotemporal state matrices. The forecasting accuracies of the improved KNN and of four other models are compared, and experimental results indicate that the improved KNN model is more appropriate for short-term traffic multistep forecasting than the other models are. This study also discusses the application of the improved KNN model in a time-varying traffic state.  相似文献   

4.
This paper develops an agent-based modeling approach to predict multi-step ahead experienced travel times using real-time and historical spatiotemporal traffic data. At the microscopic level, each agent represents an expert in a decision-making system. Each expert predicts the travel time for each time interval according to experiences from a historical dataset. A set of agent interactions is developed to preserve agents that correspond to traffic patterns similar to the real-time measurements and replace invalid agents or agents associated with negligible weights with new agents. Consequently, the aggregation of each agent’s recommendation (predicted travel time with associated weight) provides a macroscopic level of output, namely the predicted travel time distribution. Probe vehicle data from a 95-mile freeway stretch along I-64 and I-264 are used to test different predictors. The results show that the agent-based modeling approach produces the least prediction error compared to other state-of-the-practice and state-of-the-art methods (instantaneous travel time, historical average and k-nearest neighbor), and maintains less than a 9% prediction error for trip departures up to 60 min into the future for a two-hour trip. Moreover, the confidence boundaries of the predicted travel times demonstrate that the proposed approach also provides high accuracy in predicting travel time confidence intervals. Finally, the proposed approach does not require offline training thus making it easily transferable to other locations and the fast algorithm computation allows the proposed approach to be implemented in real-time applications in Traffic Management Centers.  相似文献   

5.
This paper deals with route choice models capturing travelers’ strategic behavior when adapting to revealed traffic conditions en route in a stochastic network. The strategic adaptive behavior is conceptualized as a routing policy, defined as a decision rule that maps from all possible revealed traffic conditions to the choices of next link out of decision nodes, given information access assumptions. In this paper, we use a specialized example where a variable message sign provides information about congestion status on outgoing links. We view the problem as choice under risk and present a routing policy choice model based on the cumulative prospect theory (CPT), where utility functions are nonlinear in probabilities and thus flexible attitudes toward risk can be captured.In order to illustrate the differences between routing policy and non-adaptive path choice models as well as differences between models based on expected utility (EU) theory and CPT, we estimate models based on synthetic data and compare them in terms of prediction results. There are large differences in path share predictions and the results demonstrate the flexibility of the CPT model to represent varying degrees of risk aversion and risk seeking depending on the outcome probabilities.  相似文献   

6.
This paper examines automated control strategies of variable speed limits that aim at reducing crash potential on instrumented freeways. A real-time crash prediction model was developed to estimate crash potential based on short-term variation of traffic flow characteristics. A microscopic traffic simulation model was used to realistically simulate changes in traffic conditions as an effect of variable speed limits and combined with the crash prediction model for the evaluation of control logics. Within this integrated evaluation framework, the study investigated the effect of strategy control factors on the crash potential reduction and total travel time. The study results indicated that variable speed limits could reduce crash potential by 5–17%, by temporarily reducing speed limits during risky traffic conditions when crash potential exceeded the pre-specified threshold.  相似文献   

7.
This paper validates the prediction model embedded in a model predictive controller (MPC) of variable speed limits (VSLs). The MPC controller was designed based on an extended discrete first-order model with a triangular fundamental diagram. In our previous work, the extended discrete first-order model was designed to reproduce the capacity drop and the propagation of jam waves, and it was validated with reasonable accuracy without the presence of VSLs. As VSLs influence traffic dynamics, the dynamics including VSLs needs to be validated, before it can be applied as a prediction model in MPC. For conceptual illustrations, we use two synthetic examples to show how the model reproduces the key mechanisms of VSLs that are applied by existing VSL control approaches. Furthermore, the model is calibrated by use of real traffic data from Dutch freeway A12, where the field test of a speed limit control algorithm (SPECIALIST) was conducted. In the calibration, the original model is extended by using a quadrangular fundamental diagram which keeps the linear feature of the model and represents traffic states at the under-critical branch more accurately. The resulting model is validated using various traffic data sets. The accuracy of the model is compared with a second-order traffic flow model. The performance of two models is comparable: both models reproduce accurate results matching with real data. Flow errors of the calibration and validation are around 10%. The extended discrete first-order model-based MPC controller has been demonstrated to resolve freeway jam waves efficiently by synthetic cases. It has a higher computation speed comparing to the second-order model-based MPC.  相似文献   

8.
This study aimed to improve the spatial and temporal transferability of the real-time crash risk prediction models by using the Bayesian updating approach. Data from California’s I-880N freeway in 2002 and 2009 and the I-5N freeway in 2009 were used. The crash risk models for these three datasets are quite different from each other. The model parameters do not remain stable over time or space. The transferability evaluation results show that the crash risk models cannot be directly transferred across time and space. The updating results indicate that the Bayesian updating approach is effective in improving both spatial and temporal transferability even when new data are limited. The predictive performance of the updated model increases with an increase in the sample size of the new data. In addition, when limited new data are available, updating an existing model is better than developing a model using the limited new data.  相似文献   

9.
Short‐term traffic flow prediction in urban area remains a difficult yet important problem in intelligent transportation systems. Current spatio‐temporal‐based urban traffic flow prediction techniques trend aims to discover the relationship between adjacent upstream and downstream road segments using specific models, while in this paper, we advocate to exploit the spatial and temporal information from all available road segments in a partial road network. However, the available traffic states can be high dimensional for high‐density road networks. Therefore, we propose a spatio‐temporal variable selection‐based support vector regression (VS‐SVR) model fed with the high‐dimensional traffic data collected from all available road segments. Our prediction model can be presented as a two‐stage framework. In the first stage, we employ the multivariate adaptive regression splines model to select a set of predictors most related to the target one from the high‐dimensional spatio‐temporal variables, and different weights are assigned to the selected predictors. In the second stage, the kernel learning method, support vector regression, is trained on the weighted variables. The experimental results on the real‐world traffic volume collected from a sub‐area of Shanghai, China, demonstrate that the proposed spatio‐temporal VS‐SVR model outperforms the state‐of‐the‐art. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
ABSTRACT

The purpose of maritime accident prediction is to reasonably forecast an accident occurring in the future. In determining the level of maritime traffic management safety, it is important to analyze development trends of existing traffic conditions. Common prediction methods for maritime accidents include regression analysis, grey system models (GM) and exponential smoothing. In this study, a brief introduction is provided that discusses the aforementioned prediction models, including the associated methods and characteristics of each analysis, which form the basis for an attempt to apply a residual error correction model designed to optimize the grey system model. Based on the results, in which the model is verified using two different types of maritime accident data (linear smooth type and random-fluctuation type, respectively), the prediction accuracy and the applicability were validated. A discussion is then presented on how to apply the Markov model as a way to optimize the grey system model. This method, which proved to be correct in terms of prediction accuracy and applicability, is explored through empirical analysis. Although the accuracy of the residual error correction model is usually higher than the accuracy of the original GM (1,1), the effect of the Markov correction model is not always superior to the original GM (1,1). In addition, the accuracy of the former model depends on the characteristics of the original data, the status partition and the determination method for the status transition matrix.  相似文献   

11.
12.
Car-following models are always of great interest of traffic engineers and researchers. In the age of mass data, this paper proposes a nonparametric car-following model driven by field data. Different from most of the existing car-following models, neither driver’s behaviour parameters nor fundamental diagrams are assumed in the data-driven model. The model is proposed based on the simple k-nearest neighbour, which outputs the average of the most similar cases, i.e., the most likely driving behaviour under the current circumstance. The inputs and outputs are selected, and the determination of the only parameter k is introduced. Three simulation scenarios are conducted to test the model. The first scenario is to simulate platoons following real leaders, where traffic waves with constant speed and the detailed trajectories are observed to be consistent with the empirical data. Driver’s rubbernecking behaviour and driving errors are simulated in the second and third scenarios, respectively. The time–space diagrams of the simulated trajectories are presented and explicitly analysed. It is demonstrated that the model is able to well replicate periodic traffic oscillations from the precursor stage to the decay stage. Without making any assumption, the fundamental diagrams for the simulated scenario coincide with the empirical fundamental diagrams. These all validate that the model can well reproduce the traffic characteristics contained by the field data. The nonparametric car-following model exhibits traffic dynamics in a simple and parsimonious manner.  相似文献   

13.
This study develops a car‐following model in which heavy vehicle behaviour is predicted separately from passenger car. Heavy vehicles have different characteristics and manoeuvrability compared with passenger cars. These differences could create problems in freeway operations and safety under congested traffic conditions (level of service E and F) particularly when there is high proportion of heavy vehicles. With increasing numbers of heavy vehicles in the traffic stream, model estimates of the traffic flow could be degrades because existing car‐following models do not differentiate between these vehicles and passenger cars. This study highlighted some of the differences in car‐following behaviour of heavy vehicle and passenger drivers and developed a model considering heavy vehicles. In this model, the local linear model tree approach was used to incorporate human perceptual imperfections into a car‐following model. Three different real world data sets from a stretch of freeway in USA were used in this study. Two of them were used for the training and testing of the model, and one of them was used for evaluation purpose. The performance of the model was compared with a number of existing car‐following models. The results showed that the model, which considers the heavy vehicle type, could predict car‐following behaviour of drivers better than the existing models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Traffic flow prediction is an essential part of intelligent transportation systems (ITS). Most of the previous traffic flow prediction work treated traffic flow as a time series process only, ignoring the spatial relationship from the upstream flows or the correlation with other traffic attributes like speed and density. In this paper, we utilize a linear conditional Gaussian (LCG) Bayesian network (BN) model to consider both spatial and temporal dimensions of traffic as well as speed information for short‐term traffic flow prediction. The LCG BN allows both continuous and discrete variables, which enables the consideration of categorical variables in traffic flow prediction. A microscopic traffic simulation dataset is used to test the performance of the proposed model compared to other popular approaches under different predicting time intervals. In addition, the authors investigate the importance of spatial data and speed data in flow prediction by comparing models with different levels of information. The results indicate that the prediction accuracy will increase significantly when both spatial data and speed data are included. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Pavement maintenance is essential for ensuring good riding quality and avoiding traffic congestion, air pollution, and accidents. Improving road safety is one of the most important objectives for pavement management systems. This study utilized the Tennessee Pavement Management System (PMS) and Accident History Database (AHD) to investigate the relationship between accident frequency and pavement distress variables. Focusing on four urban interstates with asphalt pavements, divided median types, and 55 mph speed limits, 21 Negative Binomial Regression models were developed for predicting various types of traffic accident frequencies based on different pavement condition variables, including rut depth (RD), International Roughness Index (IRI), and Present Serviceability Index (PSI). The modeling results indicated that the RD models did not perform well, except for predicting accidents at night and accidents under rain weather conditions; whereas, IRI and PSI were always significant prediction variables in all types of accident models. Comparing the models goodness‐of‐fit results, it was found that the PSI models had a better performance in crash frequency prediction than the RD models and IRI models. This study suggests that the PSI accident prediction models should be considered as a comprehensive approach to integrate the highway safety factors into the pavement management system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
This paper provides a two-step approach based on the stochastic differential equations (SDEs) to improve short-term prediction. In the first step of this framework, a Hull-White (HW) model is applied to obtain a baseline prediction model from previous days. Then, the extended Vasicek model (EV) is employed for modeling the difference between observations and baseline predictions (residuals) during an individual day. The parameters of this time-varying model are estimated at each sample using the residuals in a short duration of time before the time point of prediction; so it provides a real time prediction. The extracted model recovers the valuable local variation information during each day. The performance of our method in comparison with other methods improves significantly in terms of root mean squared error (RMSE), mean absolute error (MAE) and mean relative error (MRE) for real data from Tehran’s highways and the open-access PeMS database. We also demonstrate that the proposed model is appropriate for imputing the missing data in traffic dataset and it is more efficient than the probabilistic principal component analysis (PPCA) and k-Nearest neighbors (k-NN) methods.  相似文献   

17.
The modeling of travel decision making has been a popular topic in transportation planning. Previous studies focused on random-utility discrete choice models and machine learning methods. This paper proposes a new modeling approach that utilizes a mixed Bayesian network (BN) for travel decision inference. The authors use a predetermined BN structure and calculate priori and posterior probability distributions of the decision alternatives based on the observed explanatory variables. As a “utility-free” decision inference method, the BN model releases the linear structure in the utility function but assumes the traffic level of service variables follow multivariate Gaussian distribution conditional on the choice variable. A real-world case study is conducted by using the regional travel survey data for a two-dimensional decision modeling of both departure time choice and travel mode choice. The results indicate that a two-dimensional mixed BN provides better accuracy than decision tree models and nested logit models. In addition, one can derive continuous elasticity with respect to each continuous explanatory variable for sensitivity analysis. This new approach addresses a research gap in probabilistic travel decision making modeling as well as two-dimensional travel decision modeling.  相似文献   

18.
Roadside trees in Singapore are regularly trimmed for the purpose of traffic safety and roadside tree‐trimming project is one typical type of short‐term work zone projects. To implement such a short‐term work zone project, contractors usually divide an entire work zone into multiple subwork zones with the uniform length. This paper aims to determine an optimal subwork zone strategy for the short‐term work zone projects in four‐lane two‐way freeways with time window and uniform subwork zone length constraints. The deterministic queuing model is employed to estimate total user delay caused by the work zone project by taking into account variable traffic speeds. Based on the user delay estimations, this paper proceeds to build a minimization model subject to time window and uniform length constraints for the optimal subwork zone strategy problem. This paper also presents a variation of the minimization model to examine the impact of unequal subwork zone length constraint. Since these minimization models belong to the mixed‐integer non‐differentiable optimization problems, an iterative algorithm embedding with the genetic simulated annealing method is thus proposed to solve these models. Finally, a numerical example is carried out to investigate the effectiveness of the proposed models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The primary focus of this research is to develop an approach to capture the effect of travel time information on travelers’ route switching behavior in real-time, based on on-line traffic surveillance data. It also presents a freeway Origin–Destination demand prediction algorithm using an adaptive Kalman Filtering technique, where the effect of travel time information on users’ route diversion behavior has been explicitly modeled using a dynamic, aggregate, route diversion model. The inherent dynamic nature of the traffic flow characteristics is captured using a Kalman Filter modeling framework. Changes in drivers’ perceptions, as well as other randomness in the route diversion behavior, have been modeled using an adaptive, aggregate, dynamic linear model where the model parameters are updated on-line using a Bayesian updating approach. The impact of route diversion on freeway Origin–Destination demands has been integrated in the estimation framework. The proposed methodology is evaluated using data obtained from a microscopic traffic simulator, INTEGRATION. Experimental results on a freeway corridor in northwest Indiana establish that significant improvement in Origin–Destination demand prediction can be achieved by explicitly accounting for route diversion behavior.  相似文献   

20.
This paper focuses on modeling agents’ en-route diversion behavior under information provision. The behavior model is estimated based on naïve Bayes rules and re-calibrated using a Bayesian approach. Stated-preference driving simulator data is employed for model estimation. Bluetooth-based field data is employed for re-calibration. Then the behavior model is integrated with a simulation-based dynamic traffic assignment model. A traffic incident scenario along with variable message signs (VMS) is designed and analyzed under the context of a real-world large-scale transportation network to demonstrate the integrated model and the impact of drivers’ dynamic en-route diversion behavior on network performance. Macroscopic Fundamental Diagram (MFD) is employed as a measurement to represent traffic dynamics. This research has quantitatively evaluated the impact of information provision and en-route diversion in a VMS case study. It proposes and demonstrates an original, complete, behaviorally sound, and cost-effective modeling framework for potential analyses and evaluations related to Advanced Traffic Information System (ATIS) and real-time operational applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号