首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-dimensional multi-objective optimizations have been used for decades for the problems in traffic engineering although only few times so far in the optimization of signal timings. While the other engineering and science disciplines have utilized visualization of 3-dimensional Pareto fronts in the optimization studies, we have not seen many of those concepts applied to traffic signal optimization problems. To bridge the gap in the existing knowledge this study presents a methodology where 3-dimensional Pareto Fronts of signal timings, which are expressed through mobility, (surrogate) safety, and environmental factors, are optimized by use of an evolutionary algorithm. The study uses a segment of 5 signalized intersections in West Valley City, Utah, to test signal timings which provide a balance between mobility, safety and environment. In addition, a set of previous developed signal timing scenarios, including some of the Connected Vehicle technologies such as GLOSA, were conducted to evaluate the quality of the 3-dimensional Pareto front solutions. The results show success of 3-dimensinal Pareto fronts moving towards optimality. The resulting signal timing plans do not show large differences between themselves but all improve on the signal timings from the field, significantly. The commonly used optimization of standard single-objective functions shows robust solutions. The new set of Connected Vehicle technologies also shows promising benefits, especially in the area of reducing inter-vehicular friction. The resulting timing plans from two optimization sets (constrained and unconstrained) show that environmental and safe signal timings coincide but somewhat contradict mobility. Further research is needed to apply similar concepts on a variety of networks and traffic conditions before generalizing findings.  相似文献   

2.
As liquefied natural gas (LNG) steadily grows to be a common mode for commercializing natural gas, LNG supply chain optimization is becoming a key technology for gas companies to maintain competitiveness. This paper develops methods for improving the solutions for a previously stated form of an LNG inventory routing problem (LNG-IRP). Motivated by the poor performance of a Dantzig-Wolfe-based decomposition approach for exact solutions, we develop a suite of advanced heuristic techniques and propose a hybrid heuristic strategy aiming to achieve improved solutions in shorter computational time. The heuristics include two phases: the advanced construction phase is based on a rolling time algorithm and a greedy randomized adaptive search procedure (GRASP); and the solution improvement phase is a series of novel MIP-based neighborhood search techniques. The proposed algorithms are evaluated based on a set of realistic large-scale instances seen in recent literature. Extensive computational results indicate that the hybrid heuristic strategy is able to obtain optimal or near optimal feasible solutions substantially faster than commercial optimization software and also the previously proposed heuristic methods.  相似文献   

3.
This paper presents a Distributed-Coordinated methodology for signal timing optimization in connected urban street networks. The underlying assumption is that all vehicles and intersections are connected and intersections can share information with each other. The novelty of the work arises from reformulating the signal timing optimization problem from a central architecture, where all signal timing parameters are optimized in one mathematical program, to a decentralized approach, where a mathematical program controls the timing of only a single intersection. As a result of this distribution, the complexity of the problem is significantly reduced thus, the proposed approach is real-time and scalable. Furthermore, distributed mathematical programs continuously coordinate with each other to avoid finding locally optimal solutions and to move towards global optimality. We proposed a real-time and scalable solution technique to solve the problem and applied it to several case study networks under various demand patterns. The algorithm controlled queue length and maximized intersection throughput (between 1% and 5% increase compared to the actuated coordinated signals optimized in VISTRO) and reduced travel time (between 17% and 48% decrease compared to actuated coordinated signals) in all cases.  相似文献   

4.
Traffic signal timings in a road network can not only affect total user travel time and total amount of traffic emissions in the network but also create an inequity problem in terms of the change in travel costs of users traveling between different locations. This paper proposes a multi‐objective bi‐level programming model for design of sustainable and equitable traffic signal timings for a congested signal‐controlled road network. The upper level of the proposed model is a multi‐objective programming problem with an equity constraint that maximizes the reserve capacity of the network and minimizes the total amount of traffic emissions. The lower level is a deterministic network user equilibrium problem that considers the vehicle delays at signalized intersections of the network. To solve the proposed model, an approach for normalizing incommensurable objective functions is presented, and a heuristic solution algorithm that combines a penalty function approach and a simulated annealing method is developed. Two numerical examples are presented to show the effects of reserve capacity improvement and green time proportion on network flow distribution and transportation system performance and the importance of incorporating environmental and equity objectives in the traffic signal timing problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Adjusting traffic signal timings is a practical way for agencies to manage urban traffic without the need for significant infrastructure investments. Signal timings are generally selected to minimize the total control delay vehicles experience at an intersection, particularly when the intersection is isolated or undersaturated. However, in practice, there are many other potential objectives that might be considered in signal timing design, including: total passenger delay, pedestrian delays, delay inequity among competing movements, total number of stopping maneuvers, among others. These objectives do not tend to share the same relationships with signal timing plans and some of these objectives may be in direct conflict. The research proposes the use of a new multi-objective optimization (MOO) visualization technique—the mosaic plot—to easily quantify and identify significant tradeoffs between competing objectives using the set of Pareto optimal solutions that are normally provided by MOO algorithms. Using this tool, methods are also proposed to identify and remove potentially redundant or unnecessary objectives that do not have any significant tradeoffs with others in an effort to reduce problem dimensionality. Since MOO procedures will still be needed if more than one objective remains and MOO algorithms generally provide a set of candidate solutions instead of a single final solution, two methods are proposed to rank the set of Pareto optimal solutions based on how well they balance between the competing objectives to provide a final recommendation. These methods rely on converting the objectives to dimensionless values based on the optimal value for each specific objectives, which allows for direct comparison between and weighting of each. The proposed methods are demonstrated using a simple numerical example of an undersaturated intersection where all objectives can be analytically obtained. However, they can be readily applied to other signal timing problems where objectives can be obtained using simulation outputs to help identify the signal timing plan that provides the most reasonable tradeoff between competing objectives.  相似文献   

6.
In this paper we study the problem of determining the optimum cycle and phase lengths for isolated signalized intersections. Calculation of the optimal cycle and green phase lengths is based on the minimization of the average control delay experienced by all vehicles that arrive at the intersection within a given time period. We consider under-saturated as well as over-saturated conditions at isolated intersections. The defined traffic signal timing problem, that belongs to the class of combinatorial optimization problems, is solved using the Bee Colony Optimization (BCO) metaheuristic approach. The BCO is a biologically inspired method that explores collective intelligence applied by honey bees during the nectar collecting process. The numerical experiments performed on some examples show that the proposed approach is competitive with other methods. The obtained results show that the proposed approach is capable of generating high-quality solutions within negligible processing times.  相似文献   

7.
文章以南宁市四条主干道上七个交叉口组成的闭合路网为优化对象,通过交叉口交通流量分析,利用R.Kimber饱和流量计算法和F.Webster交叉口信号配时理论,初步拟定车辆延误最小的信号配时方案,然后使用遗传算法优化配时方案,最后利用VISSIM进行交通仿真,验算服务水平指标的变化,验证该优化方案。  相似文献   

8.
One of the most common measures of signalized intersection operation is the amount of delay a vehicle incurs while passing through the intersection. Traditional models for estimating vehicle delay at intersections generally assume fixed signal timing and uniform arrival rates for vehicles approaching the intersection. One would expect that highly variable arrival rates would result in much longer delays than uniform arrival rates of the same average magnitude. Furthermore, one might expect that signal timing that is adjusted according to traffic volume would result in lower delay signal when variations in flow warrant such adjustable timing. This paper attempts to test several hypotheses concerning the effects of variable traffic arrival rates and adjusted signal timing through the use of simulation. The simulation results corroborate the hypothesis concerning the effect of varying arrival rates. As the variance of the arrival rate over time increases, the average delay per vehicle also increases. Signal timing adjustments based on traffic appear to decrease delay when flow rates vary greatly. As flow variations stabilize, the benefits of signal adjustments tend to diminish.  相似文献   

9.
This paper presents an integrated framework for effective coupling of a signal timing estimation model and dynamic traffic assignment (DTA) in feedback loops. There are many challenges in effectively integrating signal timing tools with DTA software systems, such as data availability, exchange format, and system coupling. In this research, a tight coupling between a DTA model with various queue‐based simulation models and a quick estimation method Excel‐based signal control tool is achieved and tested. The presented framework design offers an automated solution for providing realistic signal timing parameters and intersection movement capacity allocation, especially for future year scenarios. The framework was used to design an open‐source data hub for multi‐resolution modeling in analysis, modeling and simulation applications, in which a typical regional planning model can be quickly converted to microscopic traffic simulation and signal optimization models. The coupling design and feedback loops are first demonstrated on a simple network, and we examine the theoretically important questions on the number of iterations required for reaching stable solutions in feedback loops. As shown in our experiment, the current coupled application becomes stable after about 30 iterations, when the capacity and signal timing parameters can quickly converge, while DTA's route switching model predominately determines and typically requires more iterations to reach a stable condition. A real‐world work zone case study illustrates how this application can be used to assess impacts of road construction or traffic incident events that disrupt normal traffic operations and cause route switching on multiple analysis levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This research focuses on planning biofuel refinery locations where the total system cost for refinery investment, feedstock and product transportation and public travel is minimized. Shipment routing of both feedstock and product in the biofuel supply chain and the resulting traffic congestion impact are incorporated into the model to decide optimal locations of biofuel refineries. A Lagrangian relaxation based heuristic algorithm is introduced to obtain near-optimum feasible solutions efficiently. To further improve optimality, a branch-and-bound framework (with linear programming relaxation and Lagrangian relaxation bounding procedures) is developed. Numerical experiments with several testing examples demonstrate that the proposed algorithms solve the problem effectively. An empirical Illinois case study and a series of sensitivity analyses are conducted to show the effects of highway congestion on refinery location design and total system costs.  相似文献   

11.
This paper analyzes a model of early morning traffic congestion, that is a special case of the model considered in Newell (1988). A fixed number of identical vehicles travel along a single-lane road of constant width from a common origin to a common destination, with LWR flow congestion and Greenshields’ Relation. Vehicles have a common work start time, late arrivals are not permitted, and trip cost is linear in travel time and time early. The paper explores traffic dynamics for the social optimum, in which total trip cost is minimized, and for the user optimum, in which no vehicle’s trip cost can be reduced by altering its departure time. Closed-form solutions for the social optimum and quasi-analytic solutions for the user optimum are presented, along with numerical examples, and it is shown that this model includes the bottleneck model (with no late arrivals) as a limit case where the length of the road shrinks to zero.  相似文献   

12.
This study proposes Reinforcement Learning (RL) based algorithm for finding optimum signal timings in Coordinated Signalized Networks (CSN) for fixed set of link flows. For this purpose, MOdified REinforcement Learning algorithm with TRANSYT-7F (MORELTRANS) model is proposed by way of combining RL algorithm and TRANSYT-7F. The modified RL differs from other RL algorithms since it takes advantage of the best solution obtained from the previous learning episode by generating a sub-environment at each learning episode as the same size of original environment. On the other hand, TRANSYT-7F traffic model is used in order to determine network performance index, namely disutility index. Numerical application is conducted on medium sized coordinated signalized road network. Results indicated that the MORELTRANS produced slightly better results than the GA in signal timing optimization in terms of objective function value while it outperformed than the HC. In order to show the capability of the proposed model for heavy demand condition, two cases in which link flows are increased by 20% and 50% with respect to the base case are considered. It is found that the MORELTRANS is able to reach good solutions for signal timing optimization even if demand became increased.  相似文献   

13.
In this paper an operation mode which is based on the stop-skipping approach is studied in urban railway lines under uncertainty. In this mode, each train follows a specific stop schedule. Trains are allowed to skip any intermediate stations to increase the commercial speed and to save energy consumption. As the commercial speed increases, the number of required trains in operation reduces and results eliminating unnecessary costs. To that end, a new mathematical model is proposed to reach the optimum stop schedule patterns. In the planning step, based on the traffic studies, the headway distributions are computed for different weekdays, and holidays. However, in practice, because of many unexpected events, the traffic may alter from what is planned. Therefore, in this condition, a robust plan is required that is optimized and immunized from uncertainty. In this paper, a new robust mathematical model, as well as two heuristic algorithms including (1) a decomposition-based algorithm and (2) a Simulated Annealing (SA) based algorithm is proposed. Finally, an Iranian metro line is studied and the optimum patterns are presented and analyzed.  相似文献   

14.
Both coordinated-actuated signal control systems and signal priority control systems have been widely deployed for the last few decades. However, these two control systems are often conflicting with each due to different control objectives. This paper aims to address the conflicting issues between actuated-coordination and multi-modal priority control. Enabled by vehicle-to-infrastructure (v2i) communication in Connected Vehicle Systems, priority eligible vehicles, such as emergency vehicles, transit buses, commercial trucks, and pedestrians are able to send request for priority messages to a traffic signal controller when approaching a signalized intersection. It is likely that multiple vehicles and pedestrians will send requests such that there may be multiple active requests at the same time. A request-based mixed-integer linear program (MILP) is formulated that explicitly accommodate multiple priority requests from different modes of vehicles and pedestrians while simultaneously considering coordination and vehicle actuation. Signal coordination is achieved by integrating virtual coordination requests for priority in the formulation. A penalty is added to the objective function when the signal coordination is not fulfilled. This “soft” signal coordination allows the signal plan to adjust itself to serve multiple priority requests that may be from different modes. The priority-optimal signal timing is responsive to real-time actuations of non-priority demand by allowing phases to extend and gap out using traditional vehicle actuation logic. The proposed control method is compared with state-of-practice transit signal priority (TSP) both under the optimized signal timing plans using microscopic traffic simulation. The simulation experiments show that the proposed control model is able to reduce average bus delay, average pedestrian delay, and average passenger car delay, especially for highly congested condition with a high frequency of transit vehicle priority requests.  相似文献   

15.
This paper presents an iterative scheme for a combined signal optimization and assignment problem, using a traffic model from the well-known procedure TRANSYT. The signal settings are optimized by means of a group-based technique, in which the signal timings are specified by the common cycle time, the start time and duration of the period of right of way for each signal group in the network. The optimization problem was formulated as an integer program and solved by a set of heuristics. Given the optimized signal settings determined from the group-based technique, a path-based assignment algorithm is employed to obtain the equilibrium traffic pattern using the sensitivity information for TRANSYT model and a Frank-Wolf method. Based on the equilibrium flow pattern, the group-based optimization algorithm is then used to determine a better set of signal timings. The procedure is repeated until certain convergence criteria are satisfied. A numerical example is employed to demonstrate the benefits obtained from this iterative scheme. Encouraging results are obtained.  相似文献   

16.
This study investigates the impacts of traffic signal timing optimization on vehicular fuel consumption and emissions at an urban corridor. The traffic signal optimization approach proposed integrates a TRANSIMS microscopic traffic simulator, the VT-Micro model (a microscopic emission and fuel consumption estimation model), and a genetic algorithm (GA)-based optimizer. An urban corridor consisting of four signalized intersections in Charlottesville, VA, USA, is used for a case study. The result of the case study is then compared with the best traffic signal timing plan generated by Synchro using the TRANSIMS microscopic traffic simulator. The proposed approach achieves much better performance than that of the best Synchro solution in terms of air quality, energy and mobility measures: 20% less network-wide fuel consumption, 8–20% less vehicle emissions, and nearly 27% less vehicle-hours-traveled (VHT).  相似文献   

17.
A case study located in Auckland, New Zealand, was used to quantify the magnitude of savings that may result if the SCATS adaptive traffic control system contains an explicitly combined queue estimation and offset adjustment on a cycle‐by‐cycle basis. A validated SATURN traffic model was used to evaluate five scenarios that represent the short‐run and long‐run efficiency gains resulting from progressive signal adaption with an objective of queue minimisation on the main corridors. Optimisation was applied both area‐wide, and on selected arterial corridors, using a combined split/offset optimisation routine with responsive driver behaviour to achieve a network‐wide and corridor‐specific efficiency gain. The modelling heuristic evaluates the efficiency of both the Equisat and P0 optimisation policies that would mimic a more progressive adaption of signals under SCATS. Results for the long‐run area‐wide optimisation can produce network‐wide travel‐time savings in the order of 20% and a reduction in transient queues of 28% if only selected corridors are optimised, with a 5% reduction in journey time over an average 8‐min journey. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Mixed cycle length operation has been recommended for networks where individual intersections process considerably different traffic volumes. The signals to operate at lower or higher cycle lengths are determined heuristically. This paper demonstrates that the use of mixed cycle lengths as given by the heuristic is inferior to operation under a common cycle length. This contradicts findings in earlier studies, and the difference in conclusion is due to the use of updated optimization methodology. A procedure for incorporating the allocation of mixed cycle lengths into the global optimization of all signal timing variables by a genetic algorithm is proposed. The mixed cycle length timing plans obtained from this procedure are an improvement over those determined heuristically. Mixed cycle length operation is found to be of a more limited application than indicated in previous studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents an integrated model for optimizing lane assignment and signal timing at tandem intersection, which is introduced recently. The pre‐signal is utilized in the tandem intersection to reorganize the traffic flow; hence, the vehicles, regardless of whether left‐turns or through vehicles, can be discharged in all the lanes. However, the previous work does not consider the extra traffic disruption and the associated delay caused by the additional pre‐signal. In the paper, the extra delay aroused by the coordination is incorporated in a lane assignment and signal timing optimization model, and the problem is converted into a mixed‐integer non‐linear programming. A feasible directions method is hence introduced to solve the mixed‐integer non‐linear programming. The result of the optimization shows that the performance of the tandem intersection is improved and the average delay is minimized. The comparison between the tandem and the conventional configuration is presented, and the results verify that the former shows better performance than the latter. In addition, the optimal sequence corresponding to the turning proportion and the optimal lane assignment at the upstream approach of the pre‐signal are presented. Furthermore, if the number of lanes is equal in all arms, the paper proves that the average delay will be reduced if lane assignment is proportional to the turning proportion and the vehicles with low proportion are discharged in advance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The integration of drones into civil airspace is one of the most challenging problems for the automation of the controlled airspace, and the optimization of the drone route is a key step for this process. In this paper, we optimize the route planning of a drone mission that consists of departing from an airport, flying over a set of mission way points and coming back to the initial airport. We assume that during the mission a set of piloted aircraft flies in the same airspace and thus the cost of the drone route depends on the air traffic and on the avoidance maneuvers used to prevent possible conflicts. Two air traffic management techniques, i.e., routing and holding, are modeled in order to maintain a minimum separation between the drone and the piloted aircraft. The considered problem, called the Time Dependent Traveling Salesman Planning Problem in Controlled Airspace (TDTSPPCA), relates to the drone route planning phase and aims to minimize the total operational cost. Two heuristic algorithms are proposed for the solution of the problem. A mathematical formulation based on a particular version of the Time Dependent Traveling Salesman Problem, which allows holdings at mission way points, and a Branch and Cut algorithm are proposed for solving the TDTSPPCA to optimality. An additional formulation, based on a Travelling Salesman Problem variant that uses specific penalties to model the holding times, is proposed and a Cutting Plane algorithm is designed. Finally, computational experiments on real-world air traffic data from Milano Linate Terminal Maneuvering Area are reported to evaluate the performance of the proposed formulations and of the heuristic algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号