首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A queue-dependent vehicle dispatching rule, with options to use special vehicles (rented, reserve, shared etc.) for relieving long waiting lines, is considered. The transportation system under consideration has one source terminal and a fleet of N regular vehicles. Passengers are assumed to arrive individually at the source terminal according to a Poisson process. An efficient recursive algorithm is derived to analyse the performance of the system. An average cost criterion is used to determine the firm's fleet size and dispatching strategy for a simpler system. This is a variant of a “Random vehicle dispatching with options” rule proposed by Zuckerman and Tapiero (1980).  相似文献   

2.
A new class of Intelligent and Autonomous Vehicles (IAVs) has been designed in the framework of Intelligent Transportation for Dynamic Environment (InTraDE) project funded by European Union. This type of vehicles is technologically superior to the existing Automated Guided Vehicles (AGVs), in many respects. They offer more flexibility and intelligence in maneuvering within confined spaces where the logistic operations take place. This includes the ability of pairing/unpairing enabling a pair of 1-TEU (20-foot Equivalent Unit) IAVs dynamically to join, transport containers of any size between 1-TEU and 1-FFE (40-foot Equivalent) and disjoin again. Deploying IAVs helps port operators to remain efficient in coping with the ever increasing volume of container traffic at ports and eliminate the need for deploying more 40-ft transporters in the very confined area of ports. In order to accommodate this new feature of IAVs, we review and extend one of the existing mixed integer programming models of AGV scheduling in order to minimize the makespan of operations for transporting a set of containers of different sizes between quay cranes and yard cranes. In particular, we study the case of Dublin Ferryport Terminal. In order to deal with the complexity of the scheduling model, we develop a Lagrangian relaxation-based decomposition approach equipped with a variable fixing procedure and a primal heuristics to obtain high-quality solution of instances of the problem.  相似文献   

3.
A dispatching problem with random availability of vehicles and options to send rented vehicles is considered. We assume passenger arrivals to be described by a pure-birth process. Such a problem is analytically attractive and is shown to have practical applications in vehicle dispatching models. An average cost criterion is used to determine firm's fleet size and option (renting) strategy.  相似文献   

4.
This paper presents in-service data collected from over 300 alternative fuel vehicles and over 80 fueling stations to help fleets determine what types of applications and alternative fuels may help them reduce their environmental impacts and fuel costs. The data were compiled in 2011 by over 30 organizations in New York State using a wide variety of commercial vehicle types and technologies. Fuel economy, incremental vehicle purchase cost, fueling station purchase cost, greenhouse gas reductions, and fuel cost savings data clarifies the performance of alternative fuel vehicles and fuel stations. Data were collected from a range of vehicle types, including school buses, delivery trucks, utility vans, street sweepers, snow plows, street pavers, bucket trucks, paratransit vans, and sedans. CNG, hybrid, LPG, and electric vehicles were tracked.  相似文献   

5.
Shared autonomous vehicles, or SAVs, have attracted significant public and private interest because of their opportunity to simplify vehicle access, avoid parking costs, reduce fleet size, and, ultimately, save many travelers time and money. One way to extend these benefits is through an electric vehicle (EV) fleet. EVs are especially suited for this heavy usage due to their lower energy costs and reduced maintenance needs. As the price of EV batteries continues to fall, charging facilities become more convenient, and renewable energy sources grow in market share, EVs will become more economically and environmentally competitive with conventionally fueled vehicles. EVs are limited by their distance range and charge times, so these are important factors when considering operations of a large, electric SAV (SAEV) fleet.This study simulated performance characteristics of SAEV fleets serving travelers across the Austin, Texas 6-county region. The simulation works in sync with the agent-based simulator MATSim, with SAEV modeling as a new mode. Charging stations are placed, as needed, to serve all trips requested (under 75 km or 47 miles in length) over 30 days of initial model runs. Simulation of distinctive fleet sizes requiring different charge times and exhibiting different ranges, suggests that the number of station locations depends almost wholly on vehicle range. Reducing charge times does lower fleet response times (to trip requests), but increasing fleet size improves response times the most. Increasing range above 175 km (109 miles) does not appear to improve response times for this region and trips originating in the urban core are served the quickest. Unoccupied travel accounted for 19.6% of SAEV mileage on average, with driving to charging stations accounting for 31.5% of this empty-vehicle mileage. This study found that there appears to be a limit on how much response time can be improved through decreasing charge times or increasing vehicle range.  相似文献   

6.
This paper investigates the fuel efficiency of commercial hybrid electric vehicles (HEVs) and compares their performance with respect to standard gasoline vehicles in the context of cold Canadian urban environments. The effect of different factors on fuel efficiency is studied including road driving conditions (link type, city size), temperature, speed, cold-starts and eco-driving training. For this study, fuel consumption data at the link level in real-world conditions was used from a sample of 74 instrumented vehicles. From the study fleet, 21 vehicles were HEVs. Among other results, the beneficial fuel efficiency merits of hybrid vehicles were demonstrated with respect to gasoline cars, in particular at low speeds and in urban (city) environments. After controlling for other factors, sedan HEVs were 28% more efficient than sedan gasoline vehicles. However, the low temperatures (below 0 °C) observed regularly during winter season in the study cities were identified as a detrimental factor to fuel economy. In winter, the fuel efficiency of HEVs decrease about 20% with respect to summer. Other factors such as eco-driving training, city size, cold start and vehicle type were also found to be statistically significant.  相似文献   

7.
Municipal fleet vehicle purchase decisions provide a direct opportunity for cities to reduce emissions of greenhouse gases (GHG) and air pollutants. However, cities typically lack comprehensive data on total life cycle impacts of various conventional and alternative fueled vehicles (AFV) considered for fleet purchase. The City of Houston, Texas, has been a leader in incorporating hybrid electric (HEV), plug-in hybrid electric (PHEV), and battery electric (BEV) vehicles into its fleet, but has yet to adopt any natural gas-powered light-duty vehicles. The City is considering additional AFV purchases but lacks systematic analysis of emissions and costs. Using City of Houston data, we calculate total fuel cycle GHG and air pollutant emissions of additional conventional gasoline vehicles, HEVs, PHEVs, BEVs, and compressed natural gas (CNG) vehicles to the City's fleet. Analyses are conducted with the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Levelized cost per kilometer is calculated for each vehicle option, incorporating initial purchase price minus residual value, plus fuel and maintenance costs. Results show that HEVs can achieve 36% lower GHG emissions with a levelized cost nearly equal to a conventional sedan. BEVs and PHEVs provide further emissions reductions, but at levelized costs 32% and 50% higher than HEVs, respectively. CNG sedans and trucks provide 11% emissions reductions, but at 25% and 63% higher levelized costs, respectively. While the results presented here are specific to conditions and vehicle options currently faced by one city, the methods deployed here are broadly applicable to informing fleet purchase decisions.  相似文献   

8.
The container cargo proportion of total maritime transport increased from 3% in 1980 to 16% in 2011. The largest Brazilian port, the port of Santos, is the 42nd largest container port in the world. However, Santos’ performance indicators are much lower than those of the world’s largest ports, so comparisons with them are difficult. This article focuses on the Brazilian container terminals that handled containers in 2009 and compares port competitiveness. This study classified seventeen Brazilian container terminals into three distinct groups based on the following competitiveness criteria: number of containers handled, berth length, number of berths, terminal tariffs (in US$), berth depth, rate of medium consignment (in containers/ship), medium board (containers/hour), average waiting time for mooring (in hours/ship), and average waiting time for load or unload cargo (in hours/ship). This classification used a hierarchical cluster analysis. The classification shows that the terminal of Tecon in the port of Santos has the best performance of all, while small terminals (<150,000 container units) are the worst performing terminals in Brazil.  相似文献   

9.
In today’s world of volatile fuel prices and climate concerns, there is little study on the relationship between vehicle ownership patterns and attitudes toward vehicle cost (including fuel prices and feebates) and vehicle technologies. This work provides new data on ownership decisions and owner preferences under various scenarios, coupled with calibrated models to microsimulate Austin’s personal-fleet evolution.Opinion survey results suggest that most Austinites (63%, population-corrected share) support a feebate policy to favor more fuel efficient vehicles. Top purchase criteria are price, type/class, and fuel economy. Most (56%) respondents also indicated that they would consider purchasing a Plug-in Hybrid Electric Vehicle (PHEV) if it were to cost $6000 more than its conventional, gasoline-powered counterpart. And many respond strongly to signals on the external (health and climate) costs of a vehicle’s emissions, more strongly than they respond to information on fuel cost savings.Twenty five-year simulations of Austin’s household vehicle fleet suggest that, under all scenarios modeled, Austin’s vehicle usage levels (measured in total vehicle miles traveled or VMT) are predicted to increase overall, along with average vehicle ownership levels (both per household and per capita). Under a feebate, HEVs, PHEVs and Smart Cars are estimated to represent 25% of the fleet’s VMT by simulation year 25; this scenario is predicted to raise total regional VMT slightly (just 2.32%, by simulation year 25), relative to the trend scenario, while reducing CO2 emissions only slightly (by 5.62%, relative to trend). Doubling the trend-case gas price to $5/gallon is simulated to reduce the year-25 vehicle use levels by 24% and CO2 emissions by 30% (relative to trend).Two- and three-vehicle households are simulated to be the highest adopters of HEVs and PHEVs across all scenarios. The combined share of vans, pickup trucks, sport utility vehicles (SUVs), and cross-over utility vehicles (CUVs) is lowest under the feebate scenario, at 35% (versus 47% in Austin’s current household fleet). Feebate-policy receipts are forecasted to exceed rebates in each simulation year.In the longer term, gas price dynamics, tax incentives, feebates and purchase prices along with new technologies, government-industry partnerships, and more accurate information on range and recharging times (which increase customer confidence in EV technologies) should have added effects on energy dependence and greenhouse gas emissions.  相似文献   

10.
Container liner fleet deployment (CLFD) is the assignment of containerships to port rotations (ship routes) for efficient transport of containers. As liner shipping services have fixed schedules, the ship-related operating cost is determined at the CLFD stage. This paper provides a critical review of existing mathematical models developed for the CLFD problems. It first gives a systematic overview of the fundamental assumptions used by the existing CLFD models. The operating characteristics dealt with in existing studies are then examined, including container transshipment and routing, uncertain demand, empty container repositioning, ship sailing speed optimization and ship repositioning. Finally, this paper points out four important future research opportunities: fleet deployment considering ship surveys and inspections, service dependent demand, pollutant emissions, and CLFD for shipping alliances.  相似文献   

11.
The transportation sector is undergoing three revolutions: shared mobility, autonomous driving, and electrification. When planning the charging infrastructure for electric vehicles, it is critical to consider the potential interactions and synergies among these three emerging systems. This study proposes a framework to optimize charging infrastructure development for increasing electric vehicle (EV) adoption in systems with different levels of autonomous vehicle adoption and ride sharing participation. The proposed model also accounts for the pre-existing charging infrastructure, vehicle queuing at the charging stations, and the trade-offs between building new charging stations and expanding existing ones with more charging ports.Using New York City (NYC) taxis as a case study, we evaluated the optimum charging station configurations for three EV adoption pathways. The pathways include EV adoption in a 1) traditional fleet (non-autonomous vehicles without ride sharing), 2) future fleet (fully autonomous vehicles with ride sharing), and 3) switch-over from traditional to future fleet. Our results show that, EV adoption in a traditional fleet requires charging infrastructure with fewer stations that each has more charging ports, compared to the future fleet which benefits from having more scattered charging stations. Charging will only reduce the service level by 2% for a future fleet with 100% EV adoption. EV adoption can reduce CO2 emissions of NYC taxis by up to 861 Tones/day for the future fleet and 1100 Tones/day for the traditional fleet.  相似文献   

12.
As an alternative transportation paradigm, shared vehicle systems have become increasingly popular in recent years. Shared vehicle systems typically consist of a fleet of vehicles that are used several times each day by different users. One of the main advantages of shared vehicle systems is that they reduce the number of vehicles required to meet total travel demand. An added energy/emissions benefit comes when low-polluting (e.g., electric) vehicles are used in the system. In order to evaluate operational issues such as vehicle availability, vehicle distribution, and energy management, a unique shared vehicle system computer simulation model has been developed. As an initial case study, the model was applied to a resort community in Southern California. The simulation model has a number of input parameters that allow for the evaluation of numerous scenarios. Several measures of effectiveness have been determined and are calculated to characterize the overall system performance. For the case study, it was found that the most effective number of vehicles (in terms of satisfying customer wait time) is in the range of 3–6 vehicles per 100 trips in a 24 h day. On the other hand, if the number of relocations also is to be minimized, there should be approximately 18–24 vehicles per 100 trips. Various inputs to the model were varied to see the overall system response. The model shows that the shared vehicle system is most sensitive to the vehicle-to-trip ratio, the relocation algorithm used, and the charging scheme employed when electric vehicles are used. A preliminary cost analysis was also performed, showing that such a system can be very competitive with present transportation systems (e.g., rental cars, taxies, etc.).  相似文献   

13.
Vehicles typically deteriorate with accumulating mileage and emit more tailpipe air pollutants per mile. Although incentive programs for scrapping old, high-emitting vehicles have been implemented to reduce urban air pollutants and greenhouse gases, these policies may create additional sales of new vehicles as well. From a life cycle perspective, the emissions from both the additional vehicle production and scrapping need to be addressed when evaluating the benefits of scrapping older vehicles. This study explores an optimal fleet conversion policy based on mid-sized internal combustion engine vehicles in the US, defined as one that minimizes total life cycle emissions from the entire fleet of new and used vehicles. To describe vehicles' lifetime emission profiles as functions of accumulated mileage, a series of life cycle inventories characterizing environmental performance for vehicle production, use, and retirement was developed for each model year between 1981 and 2020. A simulation program is developed to investigate ideal and practical fleet conversion policies separately for three regulated pollutants (CO, NMHC, and NOx) and for CO2. According to the simulation results, accelerated scrapping policies are generally recommended to reduce regulated emissions, but they may increase greenhouse gases. Multi-objective analysis based on economic valuation methods was used to investigate trade-offs among emissions of different pollutants for optimal fleet conversion policies.  相似文献   

14.
This paper evaluates the impacts on energy consumption and carbon dioxide (CO2) emissions from the introduction of electric vehicles into a smart grid, as a case study. The AVL Cruise software was used to simulate two vehicles, one electric and the other engine-powered, both operating under the New European Driving Cycle (NEDC), in order to calculate carbon dioxide (CO2) emissions, fuel consumption and energy efficiency. Available carbon dioxide data from electric power generation in Brazil were used for comparison with the simulated results. In addition, scenarios of gradual introduction of electric vehicles in a taxi fleet operating with a smart grid system in Sete Lagoas city, MG, Brazil, were made to evaluate their impacts. The results demonstrate that CO2 emissions from the electric vehicle fleet can be from 10 to 26 times lower than that of the engine-powered vehicle fleet. In addition, the scenarios indicate that even with high factors of CO2 emissions from energy generation, significant reductions of annual emissions are obtained with the introduction of electric vehicles in the fleet.  相似文献   

15.
Abstract

On-road light-duty vehicles (LDVs) play an important role in contributing to urban air pollution. Although vehicles are getting cleaner, regional growth in vehicle population and vehicle miles traveled would somewhat offset California's efforts in transportation pollution reduction. To better understand the role of LDVs in future air pollution, we conduct a case study for Sacramento, California, and investigate future trends in urban air pollution attributable to the light-duty fleet. Results indicate that ambient concentrations of CO, NO x , and total organic gases (TOGs) caused by future light-duty fleets would dramatically decrease over coming years. The resulting concentrations in 2030 might be as low as approximately 20% of the 2005 concentrations. These reflect the improvements in vehicle/fuel technologies and standards in California. However, the future particulate matter (PM10) pollution could be slightly worse than that caused by the 2005 fleet. This is a result of the growing fleet-average emission factors of particulates from 2005 to 2030. For purposes of future particulate control, more attention needs to be paid to LDVs, besides heavy-duty vehicles.  相似文献   

16.
One interaction between environmental and safety goals in transport is found within the vehicle fleet where fuel economy and secondary safety performance of individual vehicles impose conflicting requirements on vehicle mass from an individual’s perspective. Fleet characteristics influence the relationship between the environmental and safety outcomes of the fleet; the topic of this paper. Cross-sectional analysis of mass within the British fleet is used to estimate the partial effects of mass on the fuel consumption and secondary safety performance of vehicles. The results confirmed that fuel consumption increases as mass increases and is different for different combinations of fuel and transmission types. Additionally, increasing vehicle mass generally decreases the risk of injury to the driver of a given vehicle in the event of a crash. However, this relationship depends on the characteristics of the vehicle fleet, and in particular, is affected by changes in mass distribution within the fleet. We confirm that there is generally a trade-off in vehicle design between fuel economy and secondary safety performance imposed by mass. Cross-comparison of makes and models by model-specific effects reveal cases where this trade-off exists in other aspects of design. Although it is shown that mass imposes a trade-off in vehicle design between safety and fuel use, this does not necessarily mean that it imposes a trade-off between safety and environmental goals in the vehicle fleet as a whole because the secondary safety performance of a vehicle depends on both its own mass and the mass of the other vehicles with which it collides.  相似文献   

17.
Electric Freight Vehicles (EFVs) are a promising and increasingly popular alternative to conventional trucks in urban pickup/delivery operations. A key concerned research topic is to develop trip-based Tank-to-Wheel (TTW) analyses/models for EFVs energy consumption: notably, there are just a few studies in this area. Leveraging an earlier research on passenger electric vehicles, this paper aims at filling this gap by proposing a microscopic backward highly-resolved power-based EFVs energy consumption model (EFVs-ECM). The model is estimated and validated against real-world data, collected on a fleet of five EFVs in the city centre of Rome, for a total of 144 observed trips between subsequent pickup/delivery stops. Different model specifications are tested and contrasted, with promising results, in line with previous findings on electric passenger vehicles.  相似文献   

18.
Oversized vehicles, such as trucks, significantly contribute to traffic delays on freeways. Heterogeneous traffic populations, that is, those consisting of multiple vehicles types, can exhibit more complicated travel behaviors in the operating speed and performance, depending on the traffic volume as well as the proportions of vehicle types. In order to estimate the component travel time functions for heterogeneous traffic flows on a freeway, this study develops a microscopic traffic‐simulation based four‐step method. A piecewise continuous function is proposed for each vehicle type and its parameters are estimated using the traffic data generated by a microscopic traffic simulation model. The illustrated experiments based on VISSIM model indicate that (i) in addition to traffic volume, traffic composition has significant influence on the travel time of vehicles and (ii) the respective estimations for travel time of heterogeneous flows could greatly improve their estimation accuracy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The explosive growth in the freight volumes has put a lot of pressure on seaport authorities to find better ways of doing daily operations in order to improve the performance and to cope with avalanches of containers processing at container terminals. Advanced technologies, and in particular automated guided vehicle systems (AGVS), have been recently proposed as possible candidates for improving the terminal’s efficiency not only due to their abilities of significantly improving the performance but also to the repetitive nature of operations in container terminals. The deployment of AGVS may not be as effective as expected if the container terminal suffers from a poor layout. In this paper, simulation models are developed and used to demonstrate the impact of automation and terminal layout on terminal performance. In particular, two terminals with different but commonly used yard configurations are considered for automation using AGVS. A multi attribute decision making (MADM) method is used to assess the performance of the two terminals and determine the optimal number of deployed automated guided vehicles (AGVs) in each terminal. The simulation results demonstrate that substantial performance can be gained using AGVS. Furthermore, the yard layout has an effect on the number of AGVs used and on performance.  相似文献   

20.
Reversing port rotation directions of ship routes is a practical alteration of container liner shipping networks. The port rotation directions of ship routes not only affect the transit time of containers, as has been recognized by the literature, but also the shipping capacity and transshipment cost. This paper aims to obtain the optimal port rotation directions that minimize the generalized network-wide cost including transshipment cost, slot-purchasing cost and inventory cost. A mixed-integer linear programming model is proposed for the optimal port rotation direction optimization problem and it nests a minimum cost multi-commodity network flow model. The proposed model is applied to a liner shipping network operated by a global liner shipping company. Results demonstrate that real-case instances could be efficiently solved and significant cost reductions are gained by optimization of port rotation directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号