首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper studies how link-specific speed limits influence the performance of degradable transport networks, in which the capacity of each link is a degradable random variable. The distribution and cumulative distribution of link travel time have been presented with the effect of speed limits taken into account. The mean and variance of link and route travel time are formulated. Three link states have been classified, and their physical meanings have been discussed. The relationship between critical capacity, travel time and speed limit has been elaborated. We have proposed a Speed Limit- and Reliability-based User Equilibrium (SLRUE), adopting travel time budget as the principle of travelers’ route choice. A heuristic method employing the method of successive averages is developed to solve the SLRUE in degradable networks. Through numerical studies, we find that for some networks both the mean and standard deviation of the total travel time could be reduced simultaneously by imposing some speed limits. The speed limit design problem has been studied, and it is found that imposing speed limits cannot always reduce the total travel time budget of a network.  相似文献   

2.
Traffic crashes occurring on freeways/expressways are considered to relate closely to previous traffic conditions, which are time-varying. Meanwhile, most studies use volume/occupancy/speed parameters to predict the likelihood of crashes, which are invalid for roads where the traffic conditions are estimated using speed data extracted from sampled floating cars or smart phones. Therefore, a dynamic Bayesian network (DBN) model of time sequence traffic data has been proposed to investigate the relationship between crash occurrence and dynamic speed condition data. Moreover, the traffic conditions near the crash site were identified as several state combinations according to the level of congestion and included in the DBN model. Based on 551 crashes and corresponding speed information collected on expressways in Shanghai, China, DBN models were built with time series speed condition data and different state combinations. A comparative analysis of the DBN model using flow detector data and a static Bayesian network model was also conducted. The results show that, with only speed condition data and nine traffic state combinations, the DBN model can achieve a crash prediction accuracy of 76.4% with a false alarm rate of 23.7%. In addition, the results of transferability testing imply that the DBN models are applicable to other similar expressways with 67.0% crash prediction accuracy.  相似文献   

3.
In 2008 the regional government of Catalonia (Spain) reduced the maximum speed limit on several stretches of congested urban motorway in the Barcelona metropolitan area to 80 km/h, while in 2009 it introduced a variable speed system on other stretches of its metropolitan motorways. We use the differences-in-differences method, which enables a policy impact to be measured under specific conditions, to assess the impact of these policies on emissions of NOx and PM10. Empirical estimation indicate that reducing the speed limit to 80 km/h causes a 1.7–3.2% increase in NOx and 5.3–5.9% in PM10. By contrast, the variable speed policy reduced NOx and PM10 pollution by 7.7–17.1% and 14.5–17.3%. As such, a variable speed policy appears to be a more effective environmental policy than reducing the speed limit to a maximum of 80 km/h.  相似文献   

4.
Active Traffic Management (ATM) systems have been emerging in recent years in the US and Europe. They provide control strategies to improve traffic flow and reduce congestion on freeways. This study investigates the feasibility of utilizing a Variable Speed Limits (VSL) system, one key part of ATM, to improve traffic safety on freeways. A proactive traffic safety improvement VSL control algorithm is proposed. First, an extension of the METANET (METANET: A macroscopic simulation program for motorway networks) traffic flow model is employed to analyze VSL’s impact on traffic flow. Then, a real-time crash risk evaluation model is estimated for the purpose of quantifying crash risk. Finally, optimal VSL control strategies are achieved by employing an optimization technique to minimize the total crash risk along the VSL implementation corridor. Constraints are setup to limit the increase of average travel time and the differences of the posted speed limits temporarily and spatially. This novel VSL control algorithm can proactively reduce crash risk and therefore improve traffic safety. The proposed VSL control algorithm is implemented and tested for a mountainous freeway bottleneck area through the micro-simulation software VISSIM. Safety impacts of the VSL system are quantified as crash risk improvements and speed homogeneity improvements. Moreover, three different driver compliance levels are modeled in VISSIM to monitor the sensitivity of VSL effects on driver compliance. Conclusions demonstrated that the proposed VSL system could improve traffic safety by decreasing crash risk and enhancing speed homogeneity under both the high and moderate compliance levels; while the VSL system fails to significantly enhance traffic safety under the low compliance scenario. Finally, future implementation suggestions of the VSL control strategies and related research topics are also discussed.  相似文献   

5.
文章通过对传统的基于停车视距和基于交通标志视认距离的雾天高速公路限速模型的分析,提出了考虑比较全面的组合限速模型,并采用保守分析与乐观分析方法对各种限速模型的计算结果进行比较,论证各种限速模型的特点和适用条件,同时还提出了不同能见度条件下的高速公路限速值和管理措施,为高速公路雾天行车安全管理提供借鉴。  相似文献   

6.
Establishment of industry facilities often induces heavy vehicle traffic that exacerbates congestion and pavement deterioration in the neighboring highway network. While planning facility locations and land use developments, it is important to take into account the routing of freight vehicles, the impact on public traffic, as well as the planning of pavement rehabilitation. This paper presents an integrated facility location model that simultaneously considers traffic routing under congestion and pavement rehabilitation under deterioration. The objective is to minimize the total cost due to facility investment, transportation cost including traffic delay, and pavement life-cycle costs. Building upon analytical results on optimal pavement rehabilitation, the problem is formulated into a bi-level mixed-integer non-linear program (MINLP), with facility location, freight shipment routing and pavement rehabilitation decisions in the upper level and traffic equilibrium in the lower level. This problem is then reformulated into an equivalent single-level MINLP based on Karush–Kuhn–Tucker (KKT) conditions and approximation by piece-wise linear functions. Numerical experiments on hypothetical and empirical network examples are conducted to show performance of the proposed algorithm and to draw managerial insights.  相似文献   

7.
This paper investigates a traffic volume control scheme for a dynamic traffic network model which aims to ensure that traffic volumes on specified links do not exceed preferred levels. The problem is formulated as a dynamic user equilibrium problem with side constraints (DUE-SC) in which the side constraints represent the restrictions on the traffic volumes. Travelers choose their departure times and routes to minimize their generalized travel costs, which include early/late arrival penalties. An infinite-dimensional variational inequality (VI) is formulated to model the DUE-SC. Based on this VI formulation, we establish an existence result for the DUE-SC by showing that the VI admits at least one solution. To analyze the necessary condition for the DUE-SC, we restate the VI as an equivalent optimal control problem. The Lagrange multipliers associated with the side constraints as derived from the optimality condition of the DUE-SC provide the traffic volume control scheme. The control scheme can be interpreted as additional travel delays (either tolls or access delays) imposed upon drivers for using the controlled links. This additional delay term derived from the Lagrange multiplier is compared with its counterpart in a static user equilibrium assignment model. If the side constraint is chosen as the storage capacity of a link, the additional delay can be viewed as the effort needed to prevent the link from spillback. Under this circumstance, it is found that the flow is incompressible when the link traffic volume is equal to its storage capacity. An algorithm based on Euler’s discretization scheme and nonlinear programming is proposed to solve the DUE-SC. Numerical examples are presented to illustrate the mechanism of the proposed traffic volume control scheme.  相似文献   

8.
Toll road competition is one of the important issues under a build-operate-transfer (BOT) scheme, which is being encountered nowadays in many cities. When there are two or more competing firms and each firm operates a competitive toll road, their profits are interrelated due to the competitors' choices and demand inter-dependence in the network. In this paper we develop game-theoretic approaches to the study of the road network, on which multiple toll roads are operated by competitive private firms. The strategic interactions and market equilibria among the private firms are analyzed both in determining their supply (road capacity) and price (toll level) over the network. The toll road competition problems in general traffic equilibrium networks are formulated as an equilibrium program with equilibrium constraints or bi-level variational inequalities. Heuristic solution methods are proposed and their convergences are demonstrated with simple network examples. It is shown that private pricing and competition can be both profitable and welfare-improving.  相似文献   

9.
Simulating driving behavior in high accuracy allows short-term prediction of traffic parameters, such as speeds and travel times, which are basic components of Advanced Traveler Information Systems (ATIS). Models with static parameters are often unable to respond to varying traffic conditions and simulate effectively the corresponding driving behavior. It has therefore been widely accepted that the model parameters vary in multiple dimensions, including across individual drivers, but also spatially across the network and temporally. While typically on-line, predictive models are macroscopic or mesoscopic, due to computational and data considerations, nowadays microscopic models are becoming increasingly practical for dynamic applications. In this research, we develop a methodology for online calibration of microscopic traffic simulation models for dynamic multi-step prediction of traffic measures, and apply it to car-following models, one of the key models in microscopic traffic simulation models. The methodology is illustrated using real trajectory data available from an experiment conducted in Naples, using a well-established car-following model. The performance of the application with the dynamic model parameters consistently outperforms the corresponding static calibrated model in all cases, and leads to less than 10% error in speed prediction even for ten steps into the future, in all considered data-sets.  相似文献   

10.
文章针对目前广西高等级公路限速过低的问题,结合广西交通科技项目《广西高等级公路设计速度与运行速度控制研究》所取得的研究成果,阐述了高等级公路限速控制应遵循的原则、限速值确定方法和限速方案,并对广西路网工程限速控制设计提出了建议。  相似文献   

11.
Recent years have seen a renewed interest in Variable Speed Limit (VSL) strategies. New opportunities for VSL as a freeway metering mechanism or a homogenization scheme to reduce speed differences and lane changing maneuvers are being explored. This paper examines both the macroscopic and microscopic effects of different speed limits on a traffic stream, especially when adopting low speed limits. To that end, data from a VSL experiment carried out on a freeway in Spain are used. Data include vehicle counts, speeds and occupancy per lane, as well as lane changing rates for three days, each with a different fixed speed limit (80 km/h, 60 km/h, and 40 km/h). Results reveal some of the mechanisms through which VSL affects traffic performance, specifically the flow and speed distribution across lanes, as well as the ensuing lane changing maneuvers. It is confirmed that the lower the speed limit, the higher the occupancy to achieve a given flow. This result has been observed even for relatively high flows and low speed limits. For instance, a stable flow of 1942 veh/h/lane has been measured with the 40 km/h speed limit in force. The corresponding occupancy was 33%, doubling the typical occupancy for this flow in the absence of speed limits. This means that VSL strategies aiming to restrict the mainline flow on a freeway by using low speed limits will need to be applied carefully, avoiding conditions as the ones presented here, where speed limits have a reduced ability to limit flows. On the other hand, VSL strategies trying to get the most from the increased vehicle storage capacity of freeways under low speed limits might be rather promising. Additionally, results show that lower speed limits increase the speed differences across lanes for moderate demands. This, in turn, also increases the lane changing rate. This means that VSL strategies aiming to homogenize traffic and reduce lane changing activity might not be successful when adopting such low speed limits. In contrast, lower speed limits widen the range of flows under uniform lane flow distributions, so that, even for moderate to low demands, the under-utilization of any lane is avoided. These findings are useful for the development of better traffic models that are able to emulate these effects. Moreover, they are crucial for the implementation and assessment of VSL strategies and other traffic control algorithms.  相似文献   

12.
A general dynamical system model with link-based variables is formulated to characterize the processes of achieving equilibria from a non-equilibrium state in traffic networks. Several desirable properties of the dynamical system model are established, including the equivalence between its stationary state and user equilibrium, the invariance of its evolutionary trajectories, and the uniqueness and stability of its stationary points. Moreover, it is shown that not only a link-based version of two existing day-to-day traffic dynamics models but also two existing link-based dynamical system models of traffic flow are the special cases of the proposed model. The stabilities of stationary states of these special cases are also analyzed and discussed. In addition, an extension is made to the case with elastic demand. The study is helpful for better understanding the day-to-day adjustment mechanism of traffic flows in networks.  相似文献   

13.
Two speed management policies were implemented in the metropolitan area of Barcelona aimed at reducing air pollution concentration levels. In 2008, the maximum speed limit was reduced to 80 km/h and, in 2009, a variable speed system was introduced on some metropolitan motorways. This paper evaluates whether such policies have been successful in promoting cleaner air, not only in terms of average pollutant levels but also during high and low pollution episodes. To do so, we use a quantile regression approach for fixed effect panel data, which allows us analyzing different scenarios (beyond the average levels). We find that the variable speed system improves air quality with regard to the two pollutants considered here, being most effective when nitrogen oxide levels are not too low and when particulate matter concentrations are below extremely high levels. However, reducing the maximum speed limit from 120/100 km/h to 80 km/h has no effect – or even a slightly increasing effect – on the two pollutants, depending on the pollution scenario.  相似文献   

14.
This study developed a methodology to model the passenger flow stochastic assignment in urban railway network (URN) with the considerations of risk attitude. Through the network augmentation technique, the urban railway system is represented by an augmented network in which the common traffic assignment method can be used directly similar to a generalized network form. Using the analysis of different cases including deterministic travel state, emergent event, peak travel, and completely stochastic state, we developed a stochastic equilibrium formulation to capture these stochastic considerations and give effects of risk aversion level on the URN performance, the passenger flow at transfer stations through numerical studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Most of existing route guidance strategies achieves user optimal equilibrium by comparing travel time. Measuring travel time, however, might be uneasy on an urban road network. To contend with the issue, the paper mainly considers easily obtained inflow and outflow of a link and road capacity as input, and proposes a route guidance strategy for a single destination road network based on the determination of free-flow or congested conditions on alternative routes. An extended strategy for a complex network and a feedback approximation for avoiding forecast are further explored. Weaknesses of the strategy are also explicitly analyzed. To test the strategy, simulation investigations are conducted on two networks with multiple parallel routes. The results indicate that the strategy is able to provide stable splitting rates and to approximate user optimal equilibrium in different conditions, in particular when traffic demand is high. This strategy has potential to be applied in an urban road network due to its simplicity and easily obtained input data. The strategy is also applicable for single destination if some alternatives and similar routes are available.  相似文献   

16.
To estimate travel times through road networks, in this study, we assume a stochastic demand and formulate a stochastic network equilibrium model whose travel times, flows, and demands are stochastic. This model enables us to examine network reliability under stochastic circumstances and to evaluate the effect of providing traffic information on travel times. For traffic information, we focus on travel time information and propose methods to evaluate the effect of providing that information. To examine the feasibility and validity of the proposed model and methods, we apply them to a simple network and the real road network of Kanazawa, Japan. The results indicate that providing ambulance drivers in Kanazawa with travel time information leads to an average reduction in travel time of approximately three minutes.  相似文献   

17.
In this paper, we address the discrete network design problem, which determines the addition of new roads to existing transportation network to optimize the transportation system performance. Road users are assumed to follow the traffic assignment principle of stochastic user equilibrium. A mixed‐integer nonlinear nonconvex problem is developed to model this discrete network design problem with stochastic user equilibrium. The original problem is relaxed into a convex mixed‐integer nonlinear program, whose solution provides a lower bound of the original problem. The relaxed problem is then embedded into two proposed global optimization solution algorithms to obtain the global optimal solution of the problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.  相似文献   

19.
This study proposes a generalized multinomial logit model that allows heteroscedastic variance and flexible utility function shape. The novelty of our approach is that the model is theoretically derived by applying a generalized extreme-value distribution to the random component of utility, while retaining its closed-form expression. In addition, the weibit model, in which the random utility is assumed to follow the Weibull distribution, is a special case of the proposed model. This is achieved by utilizing the q-generalization method developed in Tsallis statistics. Then, our generalized logit model is incorporated into a transportation network equilibrium model. The network equilibrium model with a generalized logit route choice is formulated as an optimization problem for uncongested networks. The objective function includes Tsallis entropy, a type of generalized entropy. The generalization of the Gumbel and Weibull distributions, logit and weibit models, and network equilibrium model are formulated within a unified framework with q-generalization or Tsallis statistics.  相似文献   

20.
公路限速标志是现代交通管理中最普遍的控制车速的方式,也是保障道路交通安全的基础设施。文章介绍了限速标志设置的基本要求,分析了我国限速标志设置存在的问题,并从限速标志设置的地点、路段、位置点、距离和限速值等方面论证限速标志设置的位置,为科学设置公路限速标志提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号