首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a novel mesoscopic multilane model is proposed to enable simultaneous simulation of mandatory and discretionary lane-changing behaviors to realistically capture multilane traffic dynamics. The model considers lane specific fundamental diagrams to simulate dynamic heterogeneous lane flow distributions on expressways. Moreover, different priority levels are identified according to different lane-changing motivations and the corresponding levels of urgency. Then, an algorithm is proposed to estimate the dynamic mandatory and discretionary lane-changing demands. Finally, the lane flow propagation is defined by the reaction law of the demand–supply functions, which can be regarded as an extension of the Incremental-Transfer and/or Priority Incremental-Transfer principles. The proposed mesoscopic multilane cell transmission model is calibrated and validated on a complex weaving section of the State Route 241 freeway in Orange County, California, showing both the positive and negative impact of lane changing maneuvers, e.g., balancing effect and capacity drop, respectively. Moreover, the empirical study verifies that the model requires no additional data other than the cell transmission model does. Thus, the proposed model can be deployed as a simple simulation tool for accessing dynamic mesoscopic multilane traffic state from data available to most management centers, and also the potential application in predicting the impact of traffic incident or lane control strategy.  相似文献   

2.
This study presents a multilane model for analyzing the dynamic traffic properties of a highway segment under a lane‐closure operation that often incurs complex interactions between mandatory lane‐changing vehicles and traffic at unblocked lanes. The proposed traffic flow formulations employ the hyperbolic model used in the non‐Newtonian fluid dynamics, and assume the lane‐changing intensity between neighboring lanes as a function of their difference in density. The results of extensive simulation experiments indicate that the proposed model is capable of realistically replicating the impacts of lane‐changing maneuvers from the blocked lanes on the overall traffic conditions, including the interrelations between the approaching flow density, the resulting congestion level, and the exiting flow rate from the lane‐closure zone. Our extensive experimental analyses also confirm that traffic conditions will deteriorate dramatically and evolve to the state of traffic jam if the density has exceeded its critical level that varies with the type of lane‐closure operations. This study also provides a convenient way for computing such a critical density under various lane‐closure conditions, and offers a theoretical basis for understanding the formation as well as dissipation of traffic jam.  相似文献   

3.
Bus rapid transit (BRT) is a popular strategy to increase transit attraction because of its high‐capacity, comfortable service, and fast travel speed with the exclusive right‐of‐way. Various engineering designs of right‐of‐way and the violation enforcement influence interactions between BRT and general traffic flows. An empirical assessment framework is proposed to investigate traffic congestion and lane‐changing patterns at one typical bottleneck along a BRT corridor. The BRT bottleneck consists of bus lane, BRT station, video enforcement zone, and transit signal priority intersection. We analyze oblique cumulative vehicle counts and oblique cumulative lane‐changing maneuvers extracted from videos. The cumulative vehicle counts method widely applied in revealing queueing dynamics at freeway bottlenecks is extended to an urban BRT corridor. In the study site, we assume four lane‐changing patterns, three of which are verified by the empirical measurements. Investigations of interactions between buses and general traffic show that abnormal behaviors (such as lane violations and slow moving of the general traffic) induce 16% reduction in the saturation rate of general traffic and 17% increase in bus travel time. Further observations show that the BRT station and its induced increasing lane‐changing maneuvers increase the downstream queue discharge flows of general traffic. The empirical results also contribute to more efficient strategies of BRT planning and operations, such as alternative enforcement methods, various lane separation types, and optimized traffic operations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Weaving sections, where a merge and a diverge are in close proximity, are considered as crucial bottlenecks in the highway network. Lane changes happen frequently in such sections, leading to a reduced capacity and the traffic phenomenon known as capacity drop. This paper studies how the emerging automated vehicle technology can improve the operations and increase the capacity of weaving sections. We propose an efficient yet effective multiclass hybrid model that considers two aspects of this technology in scenarios with various penetration rates: (i) the potential to control the desired lane change decisions of automated vehicles, which is represented in a macroscopic manner as the distribution of lane change positions, and (ii) the lower reaction time associated with automated vehicles that can reduce headways and the required gaps for lane changing maneuvers. The proposed model is successfully calibrated and validated with empirical observations from conventional vehicles at a weaving section near the city of Basel, Switzerland. It is able to replicate traffic dynamics in weaving sections including the capacity drop. This model is then applied in a simulation-based optimization framework that searches for the optimal distribution of the desired lane change positions to maximize the capacity of weaving sections. Simulation results show that by optimizing the distribution of the desired lane change positions, the capacity of the studied weaving section can increase up to 15%. The results also indicate that if the reaction time is considered as well, there is an additional combined effect that can further increase the capacity. Overall, the results show the great potential of the automated vehicle technology for increasing the capacity of weaving sections.  相似文献   

5.
6.
Frequent lane-changes in highway merging, diverging, and weaving areas could disrupt traffic flow and, even worse, lead to accidents. In this paper, we propose a simple model for studying bottleneck effects of lane-changing traffic and aggregate traffic dynamics of a roadway with lane-changing areas. Based on the observation that, when changing its lane, a vehicle affects traffic on both its current and target lanes, we propose to capture such lateral interactions by introducing a new lane-changing intensity variable. With a modified fundamental diagram, we are able to study the impacts of lane-changing traffic on overall traffic flow. In addition, the corresponding traffic dynamics can be described with a simple kinematic wave model. For a location-dependent lane-changing intensity variable, we discuss kinematic wave solutions of the Riemann problem of the new model and introduce a supply–demand method for its numerical solutions. With both theoretical and empirical analysis, we demonstrate that lane-changes could have significant bottleneck effects on overall traffic flow. In the future, we will be interested in studying lane-changing intensities for different road geometries, locations, on-ramp/off-ramp flows, as well as traffic conditions. The new modeling framework could be helpful for developing ramp-metering and other lane management strategies to mitigate the bottleneck effects of lane-changes.  相似文献   

7.
Traditional macroscopic traffic flow modeling framework adopts the spatial–temporal coordinate system to analyze traffic flow dynamics. With such modeling and analysis paradigm, complications arise for traffic flow data collected from mobile sensors such as probe vehicles equipped with mobile phones, Bluetooth, and Global Positioning System devices. The vehicle‐based measurement technologies call for new modeling thoughts that address the unique features of moving measurements and explore their full potential. In this paper, we look into the concept of vehicular fundamental diagram (VFD) and discuss its engineering implications. VFD corresponds to a conventional fundamental diagram (FD) in the kinematic wave (KW) theory that adopts space–time coordinates. Similar to the regular FD in the KW theory, VFD encapsulates all traffic flow dynamics. In this paper, to demonstrate the full potential of VFD in interpreting multilane traffic flow dynamics, we generalize the classical Edie's formula and propose a direct approach of reconstructing VFD from traffic measurements in the vehicular coordinates. A smoothing algorithm is proposed to effectively reduce the nonphysical fluctuation of traffic states calculated from multilane vehicle trajectories. As an example, we apply the proposed methodology to explore the next‐generation simulation datasets and identify the existence and forms of shock waves in different coordinate systems. Our findings provide empirical justifications and further insight for the Lagrangian traffic flow theory and models when applied in practice. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
We propose a macroscopic model of lane‐changing that is consistent with car‐following behavior on a two‐lane highway. Using linear stability theory, we find that lane‐changing affects the stable region and the propagation speeds of the first‐order and second‐order waves. In analyzing a small disturbance, our model effectively reproduces certain non‐equilibrium traffic‐flow phenomena—small disturbance instability, stop‐and‐go waves, and local clusters that are affected by lane‐changing. The model also gives the flow‐density relationships in terms of the actual flow rate, the lane‐changing rate, and the difference between the potential flow rate (the flow rate that would have occurred without lane‐changing) and the actual flow rate. The relationships between the actual flow rate and traffic density and between the lane‐changing rate and traffic density follow a reverse‐lambda shape, which is largely consistent with observed traffic phenomena.  相似文献   

9.
Systematic lane changes can seriously deteriorate traffic safety and efficiency inside lane-drop, merge, and other bottleneck areas. In our previous studies (Jin, 2010a, Jin, 2010b), a phenomenological model of lane-changing traffic flow was proposed, calibrated, and analyzed based on a new concept of lane-changing intensity. In this study, we further consider weaving and non-weaving vehicles as two commodities and develop a multi-commodity, behavioral Lighthill–Whitham–Richards (LWR) model of lane-changing traffic flow. Based on a macroscopic model of lane-changing behaviors, we derive a fundamental diagram with parameters determined by car-following and lane-changing characteristics as well as road geometry and traffic composition. We further calibrate and validate fundamental diagrams corresponding to a triangular car-following fundamental diagram with NGSIM data. We introduce an entropy condition for the multi-commodity LWR model and solve the Riemann problem inside a homogeneous lane-changing area. From the Riemann solutions, we derive a flux function in terms of traffic demand and supply. Then we apply the model to study lane-changing traffic dynamics inside a lane-drop area and show that the smoothing effect of HOV lanes is consistent with observations in existing studies. The new theory of lane-changing traffic flow can be readily incorporated into Cell Transmission Model, and this study could lead to better strategies for mitigating bottleneck effects of lane-changing traffic flow.  相似文献   

10.
In modern cities, a rapid increase of motorcycles and other types of Powered Two-Wheelers (PTWs) is observed as an answer to long commuting in traffic jams and complex urban navigation. Such increasing penetration rate of PTWs creates mixed traffic flow conditions with unique characteristics that are not well understood at present. Our objective is to develop an analytical traffic flow model that reflects the mutual impacts of PTWs and Cars. Unlike cars, PTWs filter between cars, have unique dynamics, and do not respect lane discipline, therefore requiring a different modeling approach than traditional “Passenger Car Equivalent” or “Follow the Leader”. Instead, this work follows an approach that models the flow of PTWs similarly to a fluid in a porous medium, where PTWs “percolate” between cars depending on the gap between them.Our contributions are as follows: (I) a characterization of the distribution of the spacing between vehicles by the densities of PTWs and cars; (II) a definition of the equilibrium speed of each class as a function of the densities of PTWs and cars; (III) a mathematical analysis of the model’s properties (IV) an impact analysis of the gradual penetration of PTWs on cars and on heterogeneous traffic flow characteristics.The proposed model could contribute as an enabler for ‘PTW-aware’ future Cooperative Intelligent Transport Systems technologies and traffic regulations.  相似文献   

11.
This paper presents a research on traffic modelling developed for assessing traffic and energy performance of electric systems installed along roads for dynamic charging-while-driving (CWD) of fully electric vehicles (FEVs).The logic adopted by the developed traffic model is derived from a particular simulation scenario of electric charging: a freight distribution service operated using medium-sized vans. In this case, the CWD service is used to recover the state of charge of the FEV batteries to shortly start with further activities after arrival at the depot.The CWD system is assumed to be implemented in a multilane ring road with several intermediate on-ramp entrances, where the slowest lane is reserved for the dynamic charging of authorized electric vehicles. A specific traffic model is developed and implemented based on a mesoscopic approach, where energy requirements and charging opportunities affect driving and traffic behaviours. Overtaking manoeuvres as well as new entries in the CWD lane of vehicles that need to charge are modelled according to a cooperative driving system, which manages adequate time gaps between consecutive vehicles. Finally, a speed control strategy is simulated at a defined node to create an empty time-space slot in the CWD lane, by delaying the arriving vehicles. This simulated control, implemented to allow maintenance operations for CWD that may require clearing a charging zone for a short time slot, could also be applied to facilitate on-ramp merging manoeuvres.  相似文献   

12.
Real data show that reserving a lane for carpools on congested freeways induces a smoothing effect that is characterized by significantly higher bottleneck discharge flows (capacities) in adjacent lanes. The effect is reproducible across days and freeway sites: it was observed, without exception, in all cases tested. Predicted by an earlier theory, the effect arises because disruptive vehicle lane changing diminishes in the presence of a carpool lane. We therefore conjecture that smoothing can also be induced by other means that would reduce lane changing.The benefits can be large. Queueing analysis shows that the smoothing effect greatly reduces the times spent by people and vehicles in queues. For example, by ignoring the smoothing effect at one of the sites we analyzed one would predict that its carpool lane increased both the people-hours and the vehicle-hours traveled by well over 300%. In reality, the carpool lane reduced both measures due to smoothing. The effect is so significant that even a severely underused carpool lane can in some instances increase a freeway bottleneck’s total discharge flow. This happens for the site we analyzed when carpool demand is as low as 1200 vph.  相似文献   

13.
Weaving sections, a common design of motorways, require extensive lane‐change manoeuvres. Numerous studies have found that drivers tend to make their lane changes as soon as they enter the weaving section, as the traffic volume increases. Congestion builds up as a result of this high lane‐changing concentration. Importantly, such congestion also limits the use of existing infrastructure, the weaving section downstream. This behaviour thus affects both safety and operational aspects. The potential tool for managing motorways effectively and efficiently is cooperative intelligent transport systems (C‐ITS). This research investigates a lane‐change distribution advisory application based on C‐ITS for weaving vehicles in weaving sections. The objective of this research is to alleviate the lane‐changing concentration problem by coordinating weaving vehicles to ensure that such lane‐changing activities are evenly distributed over the existing weaving length. This is achieved by sending individual messages to drivers based on their location to advise them when to start their lane change. The research applied a microscopic simulation in aimsun to evaluate the proposed strategy's effectiveness in a one‐sided ramp weave. The proposed strategy was evaluated using different weaving advisory proportions, traffic demands and penetration rates. The evaluation revealed that the proposed lane‐changing advisory has the potential to significantly improve delay. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper proves that in traffic flow model calibration and validation the cumulative sum of a variable has to be preferred to the variable itself as a measure of performance. As shown through analytical relationships, model residuals dynamics are preserved if discrepancy measures of a model against reality are calculated on a cumulative variable, rather than on the variable itself. Keeping memory of model residuals occurrence times is essential in traffic flow modelling where the ability of reproducing the dynamics of a phenomenon – as a bottleneck evolution or a vehicle deceleration profile – may count as much as the ability of reproducing its order of magnitude. According to the aforesaid finding, in a car-following models context, calibration on travelled space is more robust than calibration on speed or acceleration. Similarly in case of macroscopic traffic flow models validation and calibration, cumulative flows are to be preferred to flows. Actually, the findings above hold for any dynamic model.  相似文献   

15.
Lane changes occur as many times as turning movements are needed while following a designated path. The cost of a route with many lane changes is likely to be more expensive than that with less lane changes, and unrealistic paths with impractical lane changes should be avoided for drivers' safety. In this regard, a new algorithm is developed in this study to find the realistic shortest path considering lane changing. The proposed algorithm is a modified link‐labeling Dijkstra algorithm considering the effective lane‐changing time that is a parametric function of the prevailing travel speed and traffic density. The parameters were estimated using microscopic traffic simulation data, and the numerical test demonstrated the performance of the proposed algorithm. It was found that the magnitude of the effect of the effective lane‐changing time on determining the realistic shortest path is nontrivial, and the proposed algorithm has capability to exclude links successfully where the required lane changes are practically impossible. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This work conducts a comprehensive investigation of traffic behavior and characteristics during freeway ramp merging under congested traffic conditions. On the Tokyo Metropolitan Expressway, traffic congestion frequently occurs at merging bottleneck sections, especially during heavy traffic demand. The Tokyo Metropolitan Expressway public corporation, generally applies different empirical strategies to increase the flow rate and decrease the accident rate at the merging sections. However, these strategies do not rely either on any behavioral characteristics of the merging traffic or on the geometric design of the merging segments. There have been only a few research publications concerned with traffic behavior and characteristics in these situations. Therefore, a three‐year study is undertaken to investigate traffic behavior and characteristics during the merging process under congested situations. Extensive traffic data capturing a wide range of traffic and geometric information were collected using detectors, videotaping, and surveys at eight interchanges in Tokyo Metropolitan Expressway. Maximum discharged flow rate from the head of the queue at merging sections in conjunction with traffic and geometric characteristics were analyzed. In addition, lane changing maneuver with respect to the freeway and ramp traffic behaviors were examined. It is believed that this study provides a thorough understanding of the freeway ramp merging dynamics. In addition, it forms a comprehensive database for the development and implementation of congestion management techniques at merging sections utilizing Intelligent Transportation System.  相似文献   

17.
Providing travel time information may be effective at reducing travel costs. However, this information does not always match the actual travel time that travellers will experience. Furthermore, the information is often asymmetrically provided within the network, owing to the limitations of observation devices, prediction model calibration, and uncertainty about road conditions. The purpose of this study is to investigate the effects of predictive travel time information that is asymmetrically provided to travellers. This study formulated a dynamic traffic assignment model in origin–destination (OD) pair with two parallel routes, while considering travellers’ learning processes and within-day and day-to-day dynamics. In this study, it is assumed that different information will be provided to each traveller, according to within-day traffic dynamics. Furthermore, the information is provided for only one of two possible routes, because of observation limitations. The effects of information accuracy are also discussed in this study. The results of numerical analysis indicated that information provisions possibly reduced the negative effects of deluded equilibrium state, even when the information was only provided for one of the routes. Different effects of the travel time information and its variation were illustrated according to the allocation of the bottleneck capacities of two routes.  相似文献   

18.
Recent years have seen a renewed interest in Variable Speed Limit (VSL) strategies. New opportunities for VSL as a freeway metering mechanism or a homogenization scheme to reduce speed differences and lane changing maneuvers are being explored. This paper examines both the macroscopic and microscopic effects of different speed limits on a traffic stream, especially when adopting low speed limits. To that end, data from a VSL experiment carried out on a freeway in Spain are used. Data include vehicle counts, speeds and occupancy per lane, as well as lane changing rates for three days, each with a different fixed speed limit (80 km/h, 60 km/h, and 40 km/h). Results reveal some of the mechanisms through which VSL affects traffic performance, specifically the flow and speed distribution across lanes, as well as the ensuing lane changing maneuvers. It is confirmed that the lower the speed limit, the higher the occupancy to achieve a given flow. This result has been observed even for relatively high flows and low speed limits. For instance, a stable flow of 1942 veh/h/lane has been measured with the 40 km/h speed limit in force. The corresponding occupancy was 33%, doubling the typical occupancy for this flow in the absence of speed limits. This means that VSL strategies aiming to restrict the mainline flow on a freeway by using low speed limits will need to be applied carefully, avoiding conditions as the ones presented here, where speed limits have a reduced ability to limit flows. On the other hand, VSL strategies trying to get the most from the increased vehicle storage capacity of freeways under low speed limits might be rather promising. Additionally, results show that lower speed limits increase the speed differences across lanes for moderate demands. This, in turn, also increases the lane changing rate. This means that VSL strategies aiming to homogenize traffic and reduce lane changing activity might not be successful when adopting such low speed limits. In contrast, lower speed limits widen the range of flows under uniform lane flow distributions, so that, even for moderate to low demands, the under-utilization of any lane is avoided. These findings are useful for the development of better traffic models that are able to emulate these effects. Moreover, they are crucial for the implementation and assessment of VSL strategies and other traffic control algorithms.  相似文献   

19.
This study investigates the mechanism of traffic breakdown and establishes a traffic flow model that precisely simulates the stochastic and dynamic processes of traffic flow at a bottleneck. The proposed model contains two models of stochastic processes associated with traffic flow dynamics: a model of platoon formation behind a bottleneck and a model of speed transitions within a platoon. After these proposed models are validated, they are applied to a simple one-way, one-lane expressway section containing a bottleneck, and the stochastic nature of traffic breakdown is demonstrated through theoretical exercises.  相似文献   

20.
This work examines the impact of heavy vehicle movements on measured traffic characteristics in detail. Although the number of heavy vehicles within the traffic stream is only a small percentage, their impact is prominent. Heavy vehicles impose physical and psychological effects on surrounding traffic flow because of their length and size (physical) and acceleration/deceleration (operational) characteristics. The objective of this work is to investigate the differences in traffic characteristics in the vicinity of heavy vehicles and passenger cars. The analysis focuses on heavy traffic conditions (level of service E) using a trajectory data of highway I‐80 in California. The results show that larger front and rear space gaps exist for heavy vehicles compared with passenger cars. This may be because of the limitations in manoeuvrability of heavy vehicles and the safety concerns of the rear vehicle drivers, respectively. In addition, heavy vehicle drivers mainly keep a constant speed and do not change their speed frequently. This work also examines the impact of heavy vehicles on their surrounding traffic in terms of average travel time and number of lane changing manoeuvres using Advanced Interactive Microscopic Simulator for Urban and Non‐Urban Networks (AIMSUN) microscopic traffic simulation package. According to the results, the average travel time increases when proportion of heavy vehicles rises in each lane. To reflect the impact of heavy vehicles on average travel time, a term related to heavy vehicle percentage is introduced into two different travel time equations, Bureau of Public Roads and Akçelik's travel time equations. The results show that using an exclusive term for heavy vehicles can better estimate the travel times for more than 10%. Finally, number of passenger car lane changing manoeuvres per lane will be more frequent when more heavy vehicles exist in that lane. The influence of heavy vehicles on the number of passenger car lane changing is intensified in higher traffic densities and higher percentage of heavy vehicles. Large numbers of lane changing manoeuvres can increase the number of traffic accidents and potentially reduce traffic safety. The results show an increase of 5% in the likelihood of accidents, when percentage of heavy vehicles increases to 30% of total traffic. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号