首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
This paper presents a real-time traffic network state estimation and prediction system with built-in decision support capabilities for traffic network management. The system provides traffic network managers with the capabilities to estimate the current network conditions, predict congestion dynamics, and generate efficient traffic management schemes for recurrent and non-recurrent congestion situations. The system adopts a closed-loop rolling horizon framework in which network state estimation and prediction modules are integrated with a traffic network manager module to generate efficient proactive traffic management schemes. The traffic network manger adopts a meta-heuristic search mechanism to construct the schemes by integrating a wide variety of control strategies. The system is applied in the context of Integrated Corridor Management (ICM), which is envisioned to provide a system approach for managing congested urban corridors. A simulation-based case study is presented for the US-75 corridor in Dallas, Texas. The results show the ability of the system to improve the overall network performance during hypothetical incident scenarios.  相似文献   

2.
This paper focuses on the problem of estimating historical traffic volumes between sparsely-located traffic sensors, which transportation agencies need to accurately compute statewide performance measures. To this end, the paper examines applications of vehicle probe data, automatic traffic recorder counts, and neural network models to estimate hourly volumes in the Maryland highway network, and proposes a novel approach that combines neural networks with an existing profiling method. On average, the proposed approach yields 24% more accurate estimates than volume profiles, which are currently used by transportation agencies across the US to compute statewide performance measures. The paper also quantifies the value of using vehicle probe data in estimating hourly traffic volumes, which provides important managerial insights to transportation agencies interested in acquiring this type of data. For example, results show that volumes can be estimated with a mean absolute percent error of about 21% at locations where average number of observed probes is between 30 and 47 vehicles/h, which provides a useful guideline for assessing the value of probe vehicle data from different vendors.  相似文献   

3.
Thanks to its high dimensionality and a usually non-convex constraint set, system optimal dynamic traffic assignment remains one of the most challenging problems in transportation research. This paper identifies two fundamental properties of the problem and uses them to design an efficient solution procedure. We first show that the non-convexity of the problem can be circumvented by first solving a relaxed problem and then applying a traffic holding elimination procedure to obtain the solution(s) of the original problem. To efficiently solve the relaxed problem, we explore the relationship between the relaxed problems based on different traffic flow models (PQ, SQ, CTM) and a minimal cost flow (MCF) problem for a special space-expansion network. It is shown that all the four problem formulations produce the same minimal system cost and share one common solution which does not involve inside queues in the network. Efficient solution algorithms such as the network simplex method can be applied to solve the MCF problem and identify such an optimal traffic pattern. Numerical examples are also presented to demonstrate the efficiency of the proposed solution procedure.  相似文献   

4.
This paper presents the methodology and results from a study to extract empirical microscopic vehicular interactions from a probe vehicle instrumented with sensors to monitor the ambient vehicles as it traverses a 28 mi long freeway corridor. The contributions of this paper are two fold: first, the general method and approach to seek a cost-effective balance between automation and manual data reduction that transcends the specific application. Second, the resulting empirical data set is intended to help advance traffic flow theory in general and car following models in particular. Generally the collection of empirical microscopic vehicle interaction data is either too computationally intensive or labor intensive. Historically automatic data extraction does not provide the precision necessary to advance traffic flow theory, while the labor demands of manual data extraction have limited past efforts to small scales. Key to the present study is striking the right balance between automatic and manual processing. Recognizing that any empirical microscopic data for traffic flow theory has to be manually validated anyway, the present study uses a “pretty good” automated processing algorithm followed by detailed manual cleanup using an efficient user interface to rapidly process the data. The study spans roughly two hours of data collected on a freeway during the afternoon peak of a typical weekday that includes recurring congestion. The corresponding data are being made available to the research community to help advance traffic flow theory in general and car following models in particular.  相似文献   

5.
The missing data problem remains as a difficulty in a diverse variety of transportation applications, e.g. traffic flow prediction and traffic pattern recognition. To solve this problem, numerous algorithms had been proposed in the last decade to impute the missed data. However, few existing studies had fully used the traffic flow information of neighboring detecting points to improve imputing performance. In this paper, probabilistic principle component analysis (PPCA) based imputing method, which had been proven to be one of the most effective imputing methods without using temporal or spatial dependence, is extended to utilize the information of multiple points. We systematically examine the potential benefits of multi-point data fusion and study the possible influence of measurement time lags. Tests indicate that the hidden temporal–spatial dependence is nonlinear and could be better retrieved by kernel probabilistic principle component analysis (KPPCA) based method rather than PPCA method. Comparison proves that imputing errors can be notably reduced, if temporal–spatial dependence has been appropriately considered.  相似文献   

6.
This paper reports on real data testing of a real-time freeway traffic state estimator, with a particular focus on its adaptive capabilities. The pursued general approach to the real-time adaptive estimation of complete traffic state in freeway stretches or networks is based on stochastic macroscopic traffic flow modeling and extended Kalman filtering. One major innovative feature of the traffic state estimator is the online joint estimation of important model parameters (free speed, critical density, and capacity) and traffic flow variables (flows, mean speeds, and densities), which leads to three significant advantages of the estimator: (1) avoidance of prior model calibration; (2) automatic adaptation to changing external conditions (e.g. weather and lighting conditions, traffic composition, control measures); (3) enabling of incident alarms. These three advantages are demonstrated via suitable real data testing. The achieved testing results are satisfactory and promising for subsequent applications.  相似文献   

7.
ABSTRACT

In recent years, there has been considerable research interest in short-term traffic flow forecasting. However, forecasting models offering a high accuracy at a fine temporal resolution (e.g. 1 or 5?min) and lane level are still rare. In this study, a combination of genetic algorithm, neural network and locally weighted regression is used to achieve optimal prediction under various input and traffic settings. The genetically optimized artificial neural network (GA-ANN) and locally weighted regression (GA-LWR) models are developed and tested, with the former forecasting traffic flow every 5-min within a 30-min period and the latter for forecasting traffic flow of a particular 5-min period of each for four lanes of an urban arterial road in Beijing, China. In particular, for morning peak and off-peak traffic flow prediction, the GA-ANN 5-min traffic flow model results in average errors of 3–5% and most 95th percentile errors of 7–14% for each of the four lanes; for the peak and off-peak time traffic flow predictions, the GA-LWR 5-min traffic flow model results in average errors of 2–4% and most 95th percentile errors are lower than 10% for each of the four lanes. When compared to previous models that usually offer average errors greater than 6–15%, such empirical findings should be of interest to and instrumental for transportation authorities to incorporate in their city- or state-wide Advanced Traveller Information Systems (ATIS).  相似文献   

8.
Vehicle flow forecasting is of crucial importance for the management of road traffic in complex urban networks, as well as a useful input for route planning algorithms. In general traffic predictive models rely on data gathered by different types of sensors placed on roads, which occasionally produce faulty readings due to several causes, such as malfunctioning hardware or transmission errors. Filling in those gaps is relevant for constructing accurate forecasting models, a task which is engaged by diverse strategies, from a simple null value imputation to complex spatio-temporal context imputation models. This work elaborates on two machine learning approaches to update missing data with no gap length restrictions: a spatial context sensing model based on the information provided by surrounding sensors, and an automated clustering analysis tool that seeks optimal pattern clusters in order to impute values. Their performance is assessed and compared to other common techniques and different missing data generation models over real data captured from the city of Madrid (Spain). The newly presented methods are found to be fairly superior when portions of missing data are large or very abundant, as occurs in most practical cases.  相似文献   

9.
This paper presents an integrated framework for effective coupling of a signal timing estimation model and dynamic traffic assignment (DTA) in feedback loops. There are many challenges in effectively integrating signal timing tools with DTA software systems, such as data availability, exchange format, and system coupling. In this research, a tight coupling between a DTA model with various queue‐based simulation models and a quick estimation method Excel‐based signal control tool is achieved and tested. The presented framework design offers an automated solution for providing realistic signal timing parameters and intersection movement capacity allocation, especially for future year scenarios. The framework was used to design an open‐source data hub for multi‐resolution modeling in analysis, modeling and simulation applications, in which a typical regional planning model can be quickly converted to microscopic traffic simulation and signal optimization models. The coupling design and feedback loops are first demonstrated on a simple network, and we examine the theoretically important questions on the number of iterations required for reaching stable solutions in feedback loops. As shown in our experiment, the current coupled application becomes stable after about 30 iterations, when the capacity and signal timing parameters can quickly converge, while DTA's route switching model predominately determines and typically requires more iterations to reach a stable condition. A real‐world work zone case study illustrates how this application can be used to assess impacts of road construction or traffic incident events that disrupt normal traffic operations and cause route switching on multiple analysis levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This paper applies a novel adaptive approach consisting of Artificial Neural Network (ANN) and Fuzzy Linear Regression (FLR) to improve car ownership forecasting in complex, ambiguous, and uncertain environments. This integrated approach is applied to forecast car ownership in Iran from 1930 to 2007. In this study, the level of car ownership is viewed as the result of demographic, politico-social, and urban structure factors including average family size, total population density, urban population density, urbanization rate, gross national product per capita, gasoline price, and total road length. To capture the potential complexity, uncertainty, and linearity relation between the car ownership function and its determinants, ANN and FLR (including eight well-known FLR) approaches are applied to the collected data. Next, the preferred ANN is selected based on sensitivity analysis results for the test data while the preferred FLR is identified with regard to ANOVA and MAPE results. The results obtained from the performance comparison demonstrate the considerable superiority of the preferred ANN over the preferred FLR regarding the nonlinear and complex nature of the car ownership function in Iran. This is the first study that presents an ANN-FLR approach for car ownership forecasting capable of handling complexity and non-linearity, uncertainty, pre-processing, and post-processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号