首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Pedestrians and cyclists are vulnerable road users. They are at greater risk for being killed in a crash than other road users. The percentage of fatal crashes that involve a pedestrian or cyclist is higher than the overall percentage of total trips taken by both modes. Because of this risk, finding ways to minimize problematic street environments is critical. Understanding traffic safety spatial patterns and identifying dangerous locations with significantly high crash risks for pedestrians and cyclists is essential in order to design possible countermeasures to improve road safety. This research develops two indicators for examining spatial correlation patterns between elements of the built environment (intersections) and crashes (pedestrian- or cyclist-involved). The global colocation quotient detects the overall connection in an area while the local colocation quotient identifies the locations of high-risk intersections. To illustrate our approach, we applied the methods to inspect the colocation patterns between pedestrian- or cyclist-vehicle crashes and intersections in Houston, Texas and we identified among many intersections the ones that significantly attract crashes. We also scrutinized those intersections, discussed possible attributes leading to high colocation of crashes, and proposed corresponding countermeasures.  相似文献   

2.
Video monitoring of traffic is a common practice in major cities. The data generated by video monitoring has practical uses such as traffic analysis for city planning. However, the usefulness of video monitoring of traffic is limited unless there is also a reliable way to automatically classify road users. This paper presents an automated method of road users’ classification into vehicles, cyclists, and pedestrians by using their motion cues. In this method, the movement of road users was captured on sequences of video frames. The videos were analysed using a feature-based tracking system, which has returned the tracks of road users. The separate pieces of information gained from these tracks are hereafter called Classifiers. There are nineteen classifiers included in this method. The classifiers’ values were assessed and integrated into a fuzzy membership framework, which in turn required prior configurations to be available. This led to the final classification of road users. The performance of this method demonstrated promising results. An important contribution of this paper is the creation of a robust approach that can integrate different classifiers using fuzzy membership framework. The developed method also uses parametric classifiers, which do not depend on the specific geometry or traffic operation of the intersection. This is a key advantage because it enables transferability and improves the practicality and usefulness of the method.  相似文献   

3.
Cycling and walking are being promoted in many urban areas as alternatives to motorised transport for health, environmental, and financial reasons. The reduced congestion and resulting decrease in the overall amount of pollution reduced can be expected to result in health benefits for the community. However, active commuters, due to their increased respiration rates and often increased travel times can expect to receive larger doses of air pollution compared with those using motorised forms of transport. However, given the large dropoff in concentrations away from a road, it can be expected that significant reductions can be achieved even with relatively small increases in separation between the path of cyclists/pedestrians and motor vehicles.This study presents a simple methodology for calculating the separation needed for cyclists and pedestrians to experience the same air pollution dose as car commuters. An example is given based on carbon monoxide (CO) data collected in a field campaign consisting of a car driver, a cyclist and a pedestrian travelling on a 2600 metre loop of road in Auckland. For this case study, the estimated distance from the centreline needed for cyclists and pedestrians to receive an equivalent dose of CO as motorists was found to range from 5.8 to 14.2 m depending on the commuting mode and the dispersion state of the atmosphere at the site. This was equal to a CO concentration reduction of 0.1–0.14 ppm per metre. Recommendations on facility modifications and route selections have been made to make active mode commuting safer.  相似文献   

4.
ABSTRACT

Using official national data for each country, this article calculates trends in walking and cycling fatalities per capita and per km in the USA, the UK, Germany, the Netherlands, and Denmark. From 1990 to 2018, pedestrian fatalities per capita fell by 23% in the USA vs. 66%–80% in the other countries; cyclist fatalities per capita fell by 22% in the USA vs. 55%–68% in the other countries. In 2018, pedestrian fatality rates per km in the USA were 5–10 times higher than in the other four countries; cyclist fatality rates per km in the USA were 4–7 times higher. The gap in walking and cycling fatality rates between the USA and the other countries increased over the entire 28-year period, but especially from 2010 to 2018. Over that 8-year period, per-capita fatality rates in the USA rose by 19% for pedestrians and 11% for cyclists; per-km fatality rates rose by 17% for pedestrians and 33% for cyclists. By comparison, fatality rates either fell or remained stable in the four European countries. We reviewed the relevant literature to identify factors that might help explain the much lower walking and cycling fatality rates in Europe compared to the USA. Possible explanatory factors include better walking and cycling infrastructure; lower urban speed limits; fewer vehicle km travelled; smaller and less powerful personal motor vehicles; and better traffic training, testing, and enforcement of traffic regulations. We recommend that the USA consider implementing an integrated package of mutually reinforcing safety measures such as those that have been successfully implemented in the Netherlands, Denmark, and Germany to reduce pedestrian and cyclist fatality rates.  相似文献   

5.
Very little is known about cyclist speeds and delays at the disaggregate level of each road segment and intersection in an entire city network. Speeds and delays serve as vital information for planning, navigation and routing purposes including how they differ for different times of the day and across road and bicycle facility types, after controlling for other factors. In this work, we explore the use of recent GPS cyclist trip data, from the Mon RésoVélo Smartphone application, to identify different performance measures such as travel time, speed and delay at the level of the entire network of roads and intersections on the island of Montreal. Also, a linear regression model is formulated to identify the geometric design and built environment characteristics affecting cyclist speeds on road segments. Among other results, on average, segment speeds are greater along arterials than on local streets and greater along segments with bicycle infrastructure than those without. Incorporating different measures of cyclist personality in the models revealed that the following characteristics all affect cyclist speeds along segments, each cyclist’s average speed on uphill, downhill and level segments as well as geometric design and built environment characteristics. The model results also identify that the factors that increase cyclist speeds along segments include, segments which have cyclists biking for work or school related purposes, segments used during morning peak and segments which do not have signalized intersections at either end.  相似文献   

6.
It is widely acknowledged that cyclists choose their route differently to drivers of private vehicles. The route choice decision of commuter drivers is often modelled with one objective, to reduce their generalised travel cost, which is a monetary value representing the combined travel time and vehicle operating cost. Commuter cyclists, on the other hand, usually have multiple incommensurable objectives when choosing their route: the travel time and the suitability of a route. By suitability we mean non-subjective factors that characterise the suitability of a route for cycling, including safety, traffic volumes, traffic speeds, presence of bicycle lanes, whether the terrain is flat or hilly, etc. While these incommensurable objectives are difficult to be combined into a single objective, it is also important to take into account that each individual cyclist may prioritise differently between travel time and suitability when they choose a route.This paper proposes a novel model to determine the route choice set of commuter cyclists by formulating a bi-objective routing problem. The two objectives considered are travel time and suitability of a route for cycling. Rather than determining a single route for a cyclist, we determine a choice set of optimal alternative routes (efficient routes) from which a cyclist may select one according to their personal preference depending on their perception of travel time versus other route choice criteria considered in the suitability index. This method is then implemented in a case study in Auckland, New Zealand.The study provides a starting point for the trip assignment of cyclists, and with further research, the bi-objective routing model developed can be applied to create a complete travel demand forecast model for cycle trips. We also suggest the application of the developed methodology as an algorithm in an interactive route finder to suggest efficient route choices at different levels of suitability to cyclists and potential cyclists.  相似文献   

7.
Monitoring pedestrian and cyclists movement is an important area of research in transport, crowd safety, urban design and human behaviour assessment areas. Media Access Control (MAC) address data has been recently used as potential information for extracting features from people’s movement. MAC addresses are unique identifiers of WiFi and Bluetooth wireless technologies in smart electronics devices such as mobile phones, laptops and tablets. The unique number of each WiFi and Bluetooth MAC address can be captured and stored by MAC address scanners. MAC addresses data in fact allows for unannounced, non-participatory, and tracking of people. The use of MAC data for tracking people has been focused recently for applying in mass events, shopping centres, airports, train stations, etc. In terms of travel time estimation, setting up a scanner with a big value of antenna’s gain is usually recommended for highways and main roads to track vehicle’s movements, whereas big gains can have some drawbacks in case of pedestrian and cyclists. Pedestrian and cyclists mainly move in built distinctions and city pathways where there is significant noises from other fixed WiFi and Bluetooth. Big antenna’s gains will cover wide areas that results in scanning more samples from pedestrians and cyclists’ MAC device. However, anomalies (such fixed devices) may be captured that increase the complexity and processing time of data analysis. On the other hand, small gain antennas will have lesser anomalies in the data but at the cost of lower overall sample size of pedestrian and cyclist’s data. This paper studies the effect of antenna characteristics on MAC address data in terms of travel-time estimation for pedestrians and cyclists. The results of the empirical case study compare the effects of small and big antenna gains in order to suggest optimal set up for increasing the accuracy of pedestrians and cyclists’ travel-time estimation.  相似文献   

8.
This study addresses the impacts of automated cars on traffic flow at signalized intersections. We develop and subsequently employ a deterministic simulation model of the kinematics of automated cars at a signalized intersection approach, when proceeding forward from a stationary queue at the beginning of a signal phase. In the discrete-time simulation, each vehicle pursues an operational strategy that is consistent with the ‘Assured Clear Distance Ahead’ criterion: each vehicle limits its speed and spacing from the vehicle ahead of it by its objective of not striking it, regardless of whether or not the future behavior of the vehicle ahead is cooperative. The simulation incorporates a set of assumptions regarding the values of operational parameters that will govern automated cars’ kinematics in the immediate future, which are sourced from the relevant literature.We report several findings of note. First, under a set of assumed ‘central’ (i.e. most plausible) parameter values, the time requirement to process a standing queue of ten vehicles is decreased by 25% relative to human driven vehicles. Second, it was found that the standard queue discharge model for human–driven cars does not directly transfer to queue discharge of automated vehicles. Third, a wet roadway surface may result in an increase in capacity at signalized intersections. Fourth, a specific form of vehicle-to-vehicle (V2V) communications that allows all automated vehicles in the stationary queue to begin moving simultaneously at the beginning of a signal phase provides relatively minor increases in capacity in this analysis. Fifth, in recognition of uncertainty regarding the value of each operational parameter, we identify (via scenario analysis, calculation of arc elasticities, and Monte-Carlo methods) the relative sensitivity of overall traffic flow efficiency to the value of each operational parameter.This study comprises an incremental step towards the broader objective of adapting standard techniques for analyzing traffic operations to account for the capabilities of automated vehicles.  相似文献   

9.
Urban air quality is generally poor at traffic intersections due to variations in vehicles’ speeds as they approach and leave. This paper examines the effect of traffic, vehicle and road characteristics on vehicular emissions with a view to understand a link between emissions and the most likely influencing and measurable characteristics. It demonstrates the relationships of traffic, vehicle and intersection characteristics with vehicular exhaust emissions and reviews the traffic flow and emission models. Most studies have found that vehicular exhaust emissions near traffic intersections are largely dependent on fleet speed, deceleration speed, queuing time in idle mode with a red signal time, acceleration speed, queue length, traffic-flow rate and ambient conditions. The vehicular composition also affects emissions. These parameters can be quantified and incorporated into the emission models. There is no validated methodology to quantify some non-measurable parameters such as driving behaviour, pedestrian activity, and road conditions  相似文献   

10.
The Simple Platoon Advancement (SPA) Model describes a conceptual system whose principal objective is to increase the throughput of vehicles at signalised intersections. This is achieved through a novel combination of Intelligent Transport System (ITS) technologies including Automatic Cruise Control, Lane Departure Avoidance, and Collision Avoidance. These are combined in SPA so that vehicles are progressed through signalised intersections under automated control. All of the vehicles in a stationary queue are moved instantly at the start‐of‐green as a closely‐spaced platoon. Dispersion occurs after all vehicles are in motion. Throughput of the SPA model is determined analytically and comparisons are made between the SPA model and a valid representation of current road traffic behaviour. These comparisons show that theoretically a SPA system can progress nearly twice as many vehicles past the stopline as can be seen in today's road network. Other benefits of a conceptual SPA system are improved safety and a reduction in delay per vehicle.  相似文献   

11.
Macroscopic pedestrian models for bidirectional flow analysis encounter limitations in describing microscopic dynamics at crosswalks. Pedestrian behavior at crosswalks is typically characterized by the evasive effect with conflicting pedestrians and vehicles and the following effect with leading pedestrians. This study proposes a hybrid approach (i.e., route search and social force-based approach) for modeling of pedestrian movement at signalized crosswalks. The key influential factors, i.e., leading pedestrians, conflict with opposite pedestrians, collision avoidance with vehicles, and compromise with traffic lights, are considered. Aerial video data collected at one intersection in Beijing, China were recorded and extracted. A new calibration approach based on a genetic algorithm is proposed that enables optimization of the relative error of pedestrian trajectory in two dimensions, i.e., moving distance and angle. Model validation is conducted by comparison with the observed trajectories in five typical cases of pedestrian crossing with or without conflict between pedestrians and vehicles. The characteristics of pedestrian flow, speed, acceleration, pedestrian-vehicle conflict, and the lane formation phenomenon were compared with those from two competitive models, thus demonstrating the advantage of the proposed model.  相似文献   

12.
This paper presents a micro‐simulation modeling framework for evaluating pedestrian–vehicle conflicts in crowded crossing areas. The framework adopts a simulation approach that models vehicles and pedestrians at the microscopic level while satisfying two sets of constraints: (1) flow constraints and (2) non‐collision constraints. Pedestrians move across two‐directional cells as opposed to one‐dimensional lanes as in the case of vehicles; therefore, extra caution is considered when modeling the shared space between vehicles and pedestrians. The framework is used to assess large‐scale pedestrian–vehicle conflicts in a highly congested ring road in the City of Madinah that carries 20 000 vehicles/hour and crossed by 140 000 pedestrians/hour after a major congregational prayer. The quantitative and visual results of the simulation exhibits serious conflicts between pedestrians and vehicles, resulting in considerable delays for pedestrians crossing the road (9 minutes average delay) and slow traffic conditions (average speed <10 km/hour). The model is then used to evaluate the following three mitigating strategies: (1) pedestrian‐only phase; (2) grade separation; and (3) pedestrian mall. A matrix of operational measures of effectiveness for network‐wide performance (e.g., average travel time, average speed) and for pedestrian‐specific performance (e.g., mean speed, mean density, mean delay, mean moving time) is used to assess the effectiveness of the proposed strategies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
In recent years, rapid advances in information technology have led to various data collection systems which are enriching the sources of empirical data for use in transport systems. Currently, traffic data are collected through various sensors including loop detectors, probe vehicles, cell-phones, Bluetooth, video cameras, remote sensing and public transport smart cards. It has been argued that combining the complementary information from multiple sources will generally result in better accuracy, increased robustness and reduced ambiguity. Despite the fact that there have been substantial advances in data assimilation techniques to reconstruct and predict the traffic state from multiple data sources, such methods are generally data-driven and do not fully utilize the power of traffic models. Furthermore, the existing methods are still limited to freeway networks and are not yet applicable in the urban context due to the enhanced complexity of the flow behavior. The main traffic phenomena on urban links are generally caused by the boundary conditions at intersections, un-signalized or signalized, at which the switching of the traffic lights and the turning maneuvers of the road users lead to shock-wave phenomena that propagate upstream of the intersections. This paper develops a new model-based methodology to build up a real-time traffic prediction model for arterial corridors using data from multiple sources, particularly from loop detectors and partial observations from Bluetooth and GPS devices.  相似文献   

14.
ABSTRACT

To improve the robustness of object re-identification in complex outdoor environments for traffic safety systems, a novel object re-identification algorithm based on the Individual Similarity Difference Feature (ISDF) method is proposed. This method can provide reliable support for specific object tracking during traffic accidents in video surveillance networks. First, all the images in the gallery are divided into three parts according to a segmentation ratio, and six types of feature for each part are extracted. Second, prototypes for each feature of the three parts are constructed. Third, the image sequence of the same person is grouped, and then the ISDF is extracted from each image. Finally, we use the AdaBoost classifier to judge whether the two objects are matched and then output the final results. Extensive experiments are conducted on two public data sets (Eidgenössische Technische Hochschule Zürich and multi-camera object tracking). The performance of the object re-identification method is superior to the latest methods.  相似文献   

15.
This article describes a novel approach for the binary classification of two‐wheeler road users in a dense mixed traffic intersection. The classification is a supervised procedure to differentiate between motorized and non‐motorized (human‐powered) bikes. Road users were first detected and tracked using object recognition methods. Classification features were then selected from the collected trajectories. The features include maximum speed, cadence frequency in addition to acceleration‐based parameters. Experiments were conducted on a video data set from Shanghai, China, where cyclists as well as motorcycles tend to share the main road facilities. A sensitivity analysis was performed to assess the quality of the selected features in improving the accuracy of the classification. A performance analysis demonstrated the robustness of the proposed classification method with a correct classification rate of up to 93%. This research contributes to the literature of automated data collection and can benefit the applications in many transportation‐related fields such as shared space facility planning, simulation models for two‐wheelers, and behavior analysis and road safety studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
When operated at low speeds, electric and hybrid vehicles have created pedestrian safety concerns in congested areas of various city centers, because these vehicles have relatively silent engines compared to those of internal combustion engine vehicles, resulting in safety issues for pedestrians and cyclists due to the lack of engine noise to warn them of an oncoming electric or hybrid vehicle. However, the driver behavior characteristics have also been considered in many studies, and the high end-prices of electric vehicles indicate that electric vehicle drivers tend to have a higher prosperity index and are more likely to receive a better education, making them more alert while driving and more likely to obey traffic rules. In this paper, the positive and negative factors associated with electric vehicle adoption and the subsequent effects on pedestrian traffic safety are investigated using an agent-based modeling approach, in which a traffic micro-simulation of a real intersection is simulated in 3D using AnyLogic software. First, the interacting agents and dynamic parameters are defined in the agent-based model. Next, a 3D intersection environment is created to integrate the agent-based model into a visual simulation, where the simulation records the number of near-crashes occurring in certain pedestrian crossings throughout the virtual time duration of a year. A sensitivity analysis is also carried out with 9000 subsequent simulations performed in a supercomputer to account for the variation in dynamic parameters (ambient sound level, vehicle sound level, and ambient illumination). According to the analysis, electric vehicles have a 30% higher pedestrian traffic safety risk than internal combustion engine vehicles under high ambient sound levels. At low ambient sound levels, however, electric vehicles have only a 10% higher safety risk for pedestrians. Low levels of ambient illumination also increase the number of pedestrians involved in near-crashes for both electric vehicles and combustion engine vehicles.  相似文献   

17.
Work zones exist widely on urban arterials in the cities that are undergoing road construction or maintenance. However, the existing studies on arterial work zones are very limited, especially on the work zones at urban intersections, although they have a severe negative impact on the urban traffic system. For the first time, this study focuses on how work zones reduce intersection capacity. A type of widely observed work zone, the straddling work zone that straddles on a road segment and an intersection, is studied. A linear regression model and a multiplicative model suggested by Highway Capacity Manual are proposed respectively to determine the saturation flow rate of the signal intersection with the straddling work zone. The data of 22 straddling work zones are collected and used to evaluate the performances of the proposed models. The results display that the linear regression model outperforms the multiplicative model suggested by Highway Capacity Manual. The study also reveals that reducing approach (or exit) lanes and the mixture of motor vehicles and non‐motor vehicles (and pedestrians) can significantly decrease the capacity of the intersection with straddling work zone. Therefore, in setting a straddling work zone, workers should try to ensure that the intersection approach and exit are unobstructed and set a separation for non‐motors and pedestrians to avoid mixed traffic flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Traffic signals, even though crucial for safe operations of busy intersections, are one of the leading causes of travel delays in urban settings, as well as the reason why billions of gallons of fuel are burned, and tons of toxic pollutants released to the atmosphere each year by idling engines. Recent advances in cellular networks and dedicated short-range communications make Vehicle-to-Infrastructure (V2I) communications a reality, as individual cars and traffic signals can now be equipped with communication and computing devices. In this paper, we first presented an integrated simulator with V2I, a car-following model and an emission model to simulate the behavior of vehicles at signalized intersections and calculate travel delays in queues, vehicle emissions, and fuel consumption. We then present a hierarchical green driving strategy based on feedback control to smooth stop-and-go traffic in signalized networks, where signals can disseminate traffic signal information and loop detector data to connected vehicles through V2I communications. In this strategy, the control variable is an individual advisory speed limit for each equipped vehicle, which is calculated from its location, signal settings, and traffic conditions. Finally, we quantify the mobility and environment improvements of the green driving strategy with respect to market penetration rates of equipped vehicles, traffic conditions, communication characteristics, location accuracy, and the car-following model itself, both in isolated and non-isolated intersections. In particular, we demonstrate savings of around 15% in travel delays and around 8% in fuel consumption and greenhouse gas emissions. Different from many existing ecodriving strategies in signalized road networks, where vehicles’ speed profiles are totally controlled, our strategy is hierarchical, since only the speed limit is provided, and vehicles still have to follow their leaders. Such a strategy is crucial for maintaining safety with mixed vehicles.  相似文献   

20.
The promotion of bicycle transportation includes the provision of suitable infrastructure for cyclists. In order to determine if a road is suitable for bicycling or not, and what improvements need to be made to increase the level of service for bicycles on specific situations, it is important to know how cyclists perceive the characteristics that define the roadway environment. The present paper describes research developed to define which roadway and traffic characteristics are prioritized by users and potential users in the evaluation of quality of roads for bicycling in urban areas of Brazilian medium-sized cities. A focus group discussion identified 14 attributes representing characteristics that describe the quality of roads for bicycling in Brazilian cities. In addition, an attitude survey was applied with individuals to assess their perception on the attributes, along with the importance given to each one of them. The results were analyzed through the Method of Successive Intervals Analysis, which allows the transformation of categorical data into an interval scale. The analysis suggests that both the roadway and traffic characteristics related to segments and those related to intersections are important to the survey respondents. The five most important attributes, in their opinion, are: (1) lane width; (2) motor vehicle speed; (3) visibility at intersections; (4) presence of intersections; and (5) street trees (shading). Therefore, the research suggests that to promote bicycle use in Brazilian medium-sized cities, these attributes must be prioritized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号