首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is widely recognized that precise estimation of road tolls for various pricing schemes requires a few pieces of information such as origin–destination demand functions, link travel time functions and users’ valuations of travel time savings, which are, however, not all readily available in practice. To circumvent this difficulty, we develop a convergent trial-and-error implementation method for a particular pricing scheme for effective congestion control when both the link travel time functions and demand functions are unknown. The congestion control problem of interest is also known as the traffic restraint and road pricing problem, which aims at finding a set of effective link toll patterns to reduce link flows to below a desirable target level. For the generalized traffic equilibrium problem formulated as variational inequalities, we propose an iterative two-stage approach with a self-adaptive step size to update the link toll pattern based on the observed link flows and given flow restraint levels. Link travel time and demand functions and users’ value of time are not needed. The convergence of the iterative toll adjustment algorithm is established theoretically and demonstrated on a set of numerical examples.  相似文献   

2.
Congestion pricing is one of the widely contemplated methods to manage traffic congestion. The purpose of congestion pricing is to manage traffic demand generation and supply allocation by charging fees (i.e., tolling) for the use of certain roads in order to distribute traffic demand more evenly over time and space. This study presents a framework for large-scale variable congestion pricing policy determination and evaluation. The proposed framework integrates departure time choice and route choice models within a regional dynamic traffic assignment (DTA) simulation environment. The framework addresses the impact of tolling on: (1) road traffic congestion (supply side), and (2) travelers’ choice dimensions including departure time and route choices (demand side). The framework is applied to a simulation-based case study of tolling a major freeway in Toronto while capturing the regional effects across the Greater Toronto Area (GTA). The models are developed and calibrated using regional household travel survey data that reflect the heterogeneity of travelers’ attributes. The DTA model is calibrated using actual traffic counts from the Ontario Ministry of Transportation and the City of Toronto. The case study examined two tolling scenarios: flat and variable tolling. The results indicate that: (1) more benefits are attained from variable pricing, that mirrors temporal congestion patterns, due to departure time rescheduling as opposed to predominantly re-routing only in the case of flat tolling, (2) widespread spatial and temporal re-distributions of traffic demand are observed across the regional network in response to tolling a significant, yet relatively short, expressway serving Downtown Toronto, and (3) flat tolling causes major and counterproductive rerouting patterns during peak hours, which was observed to block access to the tolled facility itself.  相似文献   

3.
In this paper, we investigate an area-based pricing scheme for congested multimodal urban networks with the consideration of user heterogeneity. We propose a time-dependent pricing scheme where the tolls are iteratively adjusted through a Proportional–Integral type feedback controller, based on the level of vehicular traffic congestion and traveler’s behavioral adaptation to the cost of pricing. The level of congestion is described at the network level by a Macroscopic Fundamental Diagram, which has been recently applied to develop network-level traffic management strategies. Within this dynamic congestion pricing scheme, we differentiate two groups of users with respect to their value-of-time (which related to income levels). We then integrate incentives, such as improving public transport services or return part of the toll to some users, to motivate mode shift and increase the efficiency of pricing and to attain equitable savings for all users. A case study of a medium size network is carried out using an agent-based simulator. The developed pricing scheme demonstrates high efficiency in congestion reduction. Comparing to pricing schemes that utilize similar control mechanisms in literature which do not treat the adaptivity of users, the proposed pricing scheme shows higher flexibility in toll adjustment and a smooth behavioral stabilization in long-term operation. Significant differences in behavioral responses are found between the two user groups, highlighting the importance of equity treatment in the design of congestion pricing schemes. By integrating incentive programs for public transport using the collected toll revenue, more efficient pricing strategies can be developed where savings in travel time outweigh the cost of pricing, achieving substantial welfare gain.  相似文献   

4.
This paper extends the bottleneck model to study congestion behavior of morning commute and its implications to transportation economics. The proposed model considers simultaneous route and departure time choices of heterogenous users who are distinguished by their valuation of travel time and punctual arrival. Moreover, two dynamic system optima are considered: one minimizes system cost in the unit of monetary value (i.e., the conventional system optimum, or SO) and the other minimizes system cost in the unit of travel time (i.e., the time-based SO, or TSO). Analytical solutions of no-toll equilibrium, SO and TSO are provided and the welfare effects of the corresponding dynamic congestion pricing options are examined, with and without route choice. The analyses suggest that TSO provides a Pareto-improving solution to the social inequity issue associated with SO. Although a TSO toll is generally discriminatory, anonymous TSO tolls do exist under certain circumstances. Unlike in the case with homogenous users, an SO toll generally alters users’ route choices by tolling the poorer users off the more desirable road, which worsens social inequity. Numerical examples are presented to verify analytical results.  相似文献   

5.
A growing literature exploits macroscopic theories of traffic to model congestion pricing policies in downtown zones. This study introduces trip length heterogeneity into this analysis and proposes a usage-based, time-varying congestion toll that alleviates congestion while prioritizing shorter trips. Unlike conventional trip-based tolls the scheme is intended to align the fees paid by drivers with the actual congestion damage they do, and to increase the toll’s benefits as a result.The scheme is intended to maximize the number of people that finish their trips close to their desired times. The usage-based toll is compared to a traditional, trip-based toll which neglects trip length. It is found that, like trip-based tolls, properly designed usage-based tolls alleviate congestion. But they reduce schedule delay more than trip-based tolls and do so with much smaller user fees. As a result usage-based tolls leave most of those who pay with a large welfare gain. This may increase the tolls’ political acceptability.  相似文献   

6.
Pricing is considered an effective management policy to reduce traffic congestion in transportation networks. In this paper we combine a macroscopic model of traffic congestion in urban networks with an agent-based simulator to study congestion pricing schemes. The macroscopic model, which has been tested with real data in previous studies, represents an accurate and robust approach to model the dynamics of congestion. The agent-based simulator can reproduce the complexity of travel behavior in terms of travelers’ choices and heterogeneity. This integrated approach is superior to traditional pricing schemes. On one hand, traffic simulators (including car-following, lane-changing and route choice models) consider travel behavior, i.e. departure time choice, inelastic to the level of congestion. On the other hand, most congestion pricing models utilize supply models insensitive to demand fluctuations and non-stationary conditions. This is not consistent with the physics of traffic and the dynamics of congestion. Furthermore, works that integrate the above features in pricing models are assuming deterministic and homogeneous population characteristics. In this paper, we first demonstrate by case studies in Zurich urban road network, that the output of a agent-based simulator is consistent with the physics of traffic flow dynamics, as defined by a Macroscopic Fundamental Diagram (MFD). We then develop and apply a dynamic cordon-based congestion pricing scheme, in which tolls are controlled by an MFD. And we investigate the effectiveness of the proposed pricing scheme. Results show that by applying such a congestion pricing, (i) the savings of travel time at both aggregated and disaggregated level outweigh the costs of tolling, (ii) the congestion inside the cordon area is eased while no extra congestion is generated in the neighbor area outside the cordon, (iii) tolling has stronger impact on leisure-related activities than on work-related activities, as fewer agents who perform work-related activities changed their time plans. Future work can apply the same methodology to other network-based pricing schemes, such as area-based or distance-traveled-based pricing. Equity issues can be investigated more carefully, if provided with data such as income of agents. Value-of-time-dependent pricing schemes then can also be determined.  相似文献   

7.
Yang  Hai 《Transportation》1999,26(3):299-322
When drivers do not have complete information on road travel time and thus choose their routes in a stochastic manner or based on their previous experience, separate implementations of either route guidance or road pricing cannot drive a stochastic network flow pattern towards a system optimum in a Wardropian sense. It is thus of interest to consider a combined route guidance and road pricing system. A road guidance system could reduce drivers' uncertainty of travel time through provision of traffic information. A driver who is equipped with a guidance system could be assumed to receive complete information, and hence be able to find the minimum travel time routes in a user-optimal manner, while marginal-cost road pricing could drive a user-optimal flow pattern toward a system optimum. Therefore, a joint implementation of route guidance and road pricing in a network with recurrent congestion could drive a stochastic network flow pattern towards a system optimum, and thus achieve a higher reduction in system travel time. In this paper the interaction between route guidance and road pricing is modeled and the potential benefit of their joint implementation is evaluated based on a mixed equilibrium traffic assignment model. The private and system benefits under marginal-cost pricing and varied levels of market penetration of the information systems are investigated with a small and a large example. It is concluded that the two technologies complement each other and that their joint implementation can reduce travel time more efficiently in a network with recurrent congestion.  相似文献   

8.
The health cost of on-road air pollution exposure is a component of traffic marginal costs that has not previously been assessed. The main objective of this paper is to introduce on-road pollution exposure as an externality of traffic, particularly important during traffic congestion when on-road pollution exposure is highest. Marginal private and external cost equations are developed that include on-road pollution exposure in addition to time, fuel, and pollution emissions components. The marginal external cost of on-road exposure includes terms for the marginal vehicle’s emissions, the increased emissions from all vehicles caused by additional congestion from the marginal vehicle, and the additional exposure duration for all travelers caused by additional congestion from the marginal vehicle. A sensitivity analysis shows that on-road pollution exposure can be a large portion (18%) of marginal social costs of traffic flow near freeway capacity, ranging from 4% to 38% with different exposure parameters. In an optimal pricing scenario, excluding the on-road exposure externality can lead to 6% residual welfare loss because of sub-optimal tolls. While regional pollution generates greater costs in uncongested conditions, on-road exposure comes to dominate health costs on congested freeways because of increased duration and intensity of exposure. The estimated marginal cost and benefit curves indicate a theoretical preference for price controls to address the externality problem. The inclusion of on-road exposure costs reduces the magnitudes of projects required to cover implementation costs for intelligent transportation system (ITS) improvements; the net benefits of road-pricing ITS systems are increased more than the net benefits of ITS traffic flow improvements. When considering distinct vehicle classes, inclusion of on-road exposure costs greatly increases heavy-duty vehicle marginal costs because of their higher emissions rates and greater roadway capacity utilization. Lastly, there are large uncertainties associated with the parameters utilized in the estimation of health outcomes that are a function of travel pollution intensity and duration. More research is needed to develop on-road exposure modeling tools that link repeated short-duration exposure and health outcomes.  相似文献   

9.
This paper presents an alternative approach to internalize congestion externality during the morning commute. We consider a linear freeway with multiple on-ramps and a downstream bottleneck and commuters accessing the freeway via different on-ramps try to arrive at work on time. Rather than charging congestion tolls as widely suggested by economists, we show that the old-fashioned engineering approach – ramp metering – can be a powerful tool to affect travelers’ departure time choice and thereby alter the congestion externality distribution among travelers. With carefully designed time-dependent metering plans, travelers from different origins can be channelized and will access the freeway bottleneck in different time periods, resulting in less total cost for the system compared to the no-metering case. The metering strategies are Pareto-improving, with travelers from the on-ramp with the highest priority having the smallest individual costs and travelers from the on-ramp with the lowest priority having their costs equal to those in the no-metering scenario. By changing the priority order of the ramps periodically, the benefit of the Pareto-improving metering strategies can be distributed evenly among all travelers. Numerical experiments show that the total user cost can be reduced by up to 40% with the proposed metering strategies. This study offers researchers and policy makers a different angle of looking at congestion externality, and the results provide an overview of the potential long term benefits that dynamic ramp metering strategies can achieve.  相似文献   

10.
This study investigates a travelers’ day-to-day route flow evolution process under a predefined market penetration of advanced traveler information system (ATIS). It is assumed that some travelers equipped with ATIS will follow the deterministic user equilibrium route choice behavior due to the complete traffic information provided by ATIS, while the other travelers unequipped with ATIS will follow the stochastic user equilibrium route choice behavior. The interaction between these two groups of travelers will result in a mixed equilibrium state. We first propose a discrete day-to-day route flow adjustment process for this mixed equilibrium behavior by specifying the travelers’ route adjustment principle and adjustment ratio. The convergence of the proposed day-to-day flow dynamic model to the mixed equilibrium state is then rigorously demonstrated under certain assumptions upon route adjustment principle and adjustment ratio. In addition, without affecting the convergence of the proposed day-to-day flow dynamic model, the assumption concerning the adjustment ratio is further relaxed, thus making the proposed model more appealing in practice. Finally, numerical experiments are conducted to illustrate and evaluate the performance of the proposed day-to-day flow dynamic model.  相似文献   

11.
This article examines urban highway congestion pricing in the instance in which it is not possible to levy a congestion toll on a major portion of the urban road system. This case is pertinent because of technical and/or political constraints. The article uses economic theory and numerical examples to show that the optimum second-best toll can vary appreciably from the optimal tolls in a regime in which efficient tolls can be imposed on all routes.  相似文献   

12.
With the approach of introducing the conceptions of mental account and mental budgeting into the process of travelers’ route choice, we try to identify why the usages of tolled roads are often overestimated. Assuming that every traveler sets a mental account for his/her travel to keep track of their expense and keep out-of-pocket spending under control, it addresses these questions such that “How much money can I spend on the travel?” and “What if I spend too much?”. Route tolls that exceed the budget are much more unacceptable compared to those within budget due to the non-fungibility of money between different accounts. A simple network with two nodes and two routes is analyzed firstly, the analytical solutions are obtained and the optimal road tolls supporting the user equilibrium as a system optimum are also derived. The proposed model is then extended to a generalized network. The multiclass user equilibrium conditions with travel mental budgeting are formulated into an equivalent variational inequality (VI) problem and an equivalent minimization problem. Through analyses with numerical examples, it is found that the main reason that the usages of high tolled roads are often overestimated is due to the fact that travelers with low and moderate out-of-pocket travel budget perceive a much higher travel cost than their actual cost on the high tolled roads.  相似文献   

13.
This paper develops a mathematical model and solution procedure to identify an optimal zonal pricing scheme for automobile traffic to incentivize the expanded use of transit as a mechanism to stem congestion and the social costs that arise from that congestion. The optimization model assumes that there is a homogenous collection of users whose behavior can be described as utility maximizers and for which their utility function is driven by monetary costs. These monetary costs are assumed to be the tolls in place, the per mile cost to drive, and the value of their time. We assume that there is a system owner who sets the toll prices, collects the proceeds from the tolls, and invests those funds in transit system improvements in the form of headway reductions. This yields a bi-level optimization model which we solve using an iterative procedure that is an integration of a genetic algorithm and the Frank–Wolfe method. The method and solution procedure is applied to an illustrative example.  相似文献   

14.
This paper investigates the convergence of the trial-and-error procedure to achieve the system optimum by incorporating the day-to-day evolution of traffic flows. The path flows are assumed to follow an ‘excess travel cost dynamics’ and evolve from disequilibrium states to the equilibrium day by day. This implies that the observed link flow pattern during the trial-and-error procedure is in disequilibrium. By making certain assumptions on the flow evolution dynamics, we prove that the trial-and-error procedure is capable of learning the system optimum link tolls without requiring explicit knowledge of the demand functions and flow evolution mechanism. A methodology is developed for updating the toll charges and choosing the inter-trial periods to ensure convergence of the iterative approach towards the system optimum. Numerical examples are given in support of the theoretical findings.  相似文献   

15.
Pricing of roadways opens doors for infrastructure financing, and congestion pricing seeks to address inefficiencies in roadway operations. This paper emphasizes the revenue-generation opportunities and welfare impacts of flat-tolling schemes, standard congestion pricing, and credit-based congestion pricing policies. While most roadway investment decisions focus on travel time savings for existing trips, this work turns to logsum differences (which quantify changes in consumer surplus) for nested logit specifications across two traveler types, two destinations, three modes and three times of day, in order to arrive at welfare- and revenue-maximizing solutions. This behavioral specification is quite flexible, and facilitates benefit-cost calculations (as well as equity analysis), as demonstrated in this paper.The various cases examined suggest significant opportunities for financing new roadway investment while addressing congestion and equity issues, with net gains for both traveler types. Application results illustrate how, even after roadway construction and maintenance costs are covered, receipts may remain to distribute to eligible travelers so that typical travelers can be made better off than if a new, non-tolled road had been constructed. Moreover, tolling both routes (new and old) results in substantially shorter payback periods (5 versus 20 years) and higher welfare outcomes (in the case of welfare-maximizing tolls with credit distributions to all travelers). The tools and techniques highlighted here illustrate practical methods for identifying welfare-enhancing and cost-recovering investment opportunities, while recognizing multiple user classes and appropriate demand elasticity across times of day, destinations, modes and routes.  相似文献   

16.
The adoption of congestion pricing depends fundamentally upon drivers’ willingness to pay to reduce travel time during the congested morning peak period. Using revealed preference data from a congestion pricing demonstration project in San Diego, we estimate that willingness to pay to reduce congested travel time is higher than previous stated preference results. Our estimate of median willingness to pay to reduce commute time is roughly $30 per hour, although this may be biased upward by drivers’ perception that the toll facility provides safer driving conditions. Drivers also use the posted toll as an indicator of abnormal congestion and increase their usage of the toll facility when tolls are higher than normal.  相似文献   

17.
The effect of the application of advanced transport information system (ATIS) and road pricing is studied in a transportation system under non-recurrent congestion. A stochastic network deterministic user equilibrium model (SNDUE) with elastic demand is formulated and used to evaluate the welfare and private impacts of different market penetrations of ATIS, together with road pricing for a simple network. Both marginal first-best road pricing and a second-best fixed road pricing are considered. The incentives of private users to use ATIS are analyzed and the characteristics of optimum tolls as a function of ATIS market penetration are shown. We conclude that ATIS is an efficient and necessary tool to reduce the effects of non-recurrent incidents in a transportation network, especially when non-recurrent congestion causes a significant deterioration of operational conditions of the network. If the impact of non-recurrent incidents on free flow costs is small or is reduced only to congestion effects, the use of road pricing would be more efficient. Social benefits obtained when jointly implementing ATIS and road pricing are practically the same whether first-best or second-best road pricing is used. Considering the private costs perceived by the network users, and the benefits experienced by equipped users, the maximum level of market penetration achieved could be limited because private benefits disappear after certain market penetration is obtained.  相似文献   

18.
In this paper, we proposed an evaluation method of exclusive bus lanes (EBLs) in a bi-modal degradable road network with car and bus transit modes. Link travel time with and without EBLs for two modes is analyzed with link stochastic degradation. Furthermore, route general travel costs are formulated with the uncertainty of link travel time for both modes and the uncertainty of waiting time at a bus stop and in-vehicle congestion costs for the bus mode. The uncertainty of bus waiting time is considered to be relevant to the degradation of the front links of the bus line. A bi-modal user equilibrium model incorporating travelers’ risk adverse behavior is proposed for evaluating EBLs. Finally, two numerical examples are used to illustrate how the road degradation level, travelers’ risk aversion level and the front link’s correlation level with the uncertainty of the bus waiting time affect the results of the user equilibrium model with and without EBLs and how the road degradation level affects the optimal EBLs setting scheme. A paradox of EBLs setting is also illustrated where adding one exclusive bus lane may decrease share of bus.  相似文献   

19.
We study the shared autonomous vehicle (SAV) routing problem while considering congestion. SAVs essentially provide a dial-a-ride service to travelers, but the large number of vehicles involved (tens of thousands of SAVs to replace personal vehicles) results in SAV routing causing significant congestion. We combine the dial-a-ride service constraints with the linear program for system optimal dynamic traffic assignment, resulting in a congestion-aware formulation of the SAV routing problem. Traffic flow is modeled through the link transmission model, an approximate solution to the kinematic wave theory of traffic flow. SAVs interact with travelers at origins and destinations. Due to the large number of vehicles involved, we use a continuous approximation of flow to formulate a linear program. Optimal solutions demonstrate that peak hour demand is likely to have greater waiting and in-vehicle travel times than off-peak demand due to congestion. SAV travel times were only slightly greater than system optimal personal vehicle route choice. In addition, solutions can determine the optimal fleet size to minimize congestion or maximize service.  相似文献   

20.
This paper aims to develop a hybrid closed-form route choice model and the corresponding stochastic user equilibrium (SUE) to alleviate the drawbacks of both Logit and Weibit models by simultaneously considering absolute cost difference and relative cost difference in travelers’ route choice decisions. The model development is based on an observation that the issues of absolute and relative cost differences are analogous to the negative exponential and power impedance functions of the trip distribution gravity model. Some theoretical properties of the hybrid model are also examined, such as the probability relationship among the three models, independence from irrelevant alternatives, and direct and indirect elasticities. To consider the congestion effect, we provide a unified modeling framework to formulate the Logit, Weibit and hybrid SUE models with the same entropy maximization objective but with different total cost constraint specifications representing the modelers’ knowledge of the system. With this, there are two ways to interpret the dual variable associated with the cost constraint: shadow price representing the marginal change in the entropy level to a marginal change in the total cost, and dispersion/shape parameter representing the travelers’ perceptions of travel costs. To further consider the route overlapping effect, a path-size factor is incorporated into the hybrid SUE model. Numerical examples are also provided to illustrate the capability of the hybrid model in handling both absolute and relative cost differences as well as the route overlapping problem in travelers’ route choice decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号