共查询到14条相似文献,搜索用时 15 毫秒
1.
Most of existing route guidance strategies achieves user optimal equilibrium by comparing travel time. Measuring travel time, however, might be uneasy on an urban road network. To contend with the issue, the paper mainly considers easily obtained inflow and outflow of a link and road capacity as input, and proposes a route guidance strategy for a single destination road network based on the determination of free-flow or congested conditions on alternative routes. An extended strategy for a complex network and a feedback approximation for avoiding forecast are further explored. Weaknesses of the strategy are also explicitly analyzed. To test the strategy, simulation investigations are conducted on two networks with multiple parallel routes. The results indicate that the strategy is able to provide stable splitting rates and to approximate user optimal equilibrium in different conditions, in particular when traffic demand is high. This strategy has potential to be applied in an urban road network due to its simplicity and easily obtained input data. The strategy is also applicable for single destination if some alternatives and similar routes are available. 相似文献
2.
This paper investigates the convergence of the trial-and-error procedure to achieve the system optimum by incorporating the day-to-day evolution of traffic flows. The path flows are assumed to follow an ‘excess travel cost dynamics’ and evolve from disequilibrium states to the equilibrium day by day. This implies that the observed link flow pattern during the trial-and-error procedure is in disequilibrium. By making certain assumptions on the flow evolution dynamics, we prove that the trial-and-error procedure is capable of learning the system optimum link tolls without requiring explicit knowledge of the demand functions and flow evolution mechanism. A methodology is developed for updating the toll charges and choosing the inter-trial periods to ensure convergence of the iterative approach towards the system optimum. Numerical examples are given in support of the theoretical findings. 相似文献
3.
A smart design of transport systems involves efficient use and allocation of the limited urban road capacity in the multimodal environment. This paper intends to understand the system-wide effect of dividing the road space to the private and public transport modes and how the public transport service provider responds to the space changes. To this end, the bimodal dynamic user equilibrium is formulated for separated road space. The Macroscopic Fundamental Diagram (MFD) model is employed to depict the dynamics of the automobile traffic for its state-dependent feature, its inclusion of hypercongestion, and its advantage of capturing network topology. The delay of a bus trip depends on the running speed which is in turn affected by bus lane capacity and ridership. Within the proposed bimodal framework, the steady-state equilibrium traffic characteristics and the optimal bus fare and service frequency are analytically derived. The counter-intuitive properties of traffic condition, modal split, and behavior of bus operator in the hypercongestion are identified. To understand the interaction between the transport authority (for system benefit maximization) and the bus operator (for its own benefit maximization), we examine how the bus operator responds to space changes and how the system benefit is influenced with the road space allocation. With responsive bus service, the condition, under which expanding bus lane capacity is beneficial to the system as a whole, has been analytically established. Then the model is applied to the dynamic framework where the space allocation changes with varying demand and demand-responsive bus service. We compare the optimal bus services under different economic objectives, evaluate the system performance of the bimodal network, and explore the dynamic space allocation strategy for the sake of social welfare maximization. 相似文献
4.
In this paper, we study the boundedly rational route choice behavior under the Simon’s satisficing rule. A laboratory experiment was carried out to verify the participants’ boundedly rational route choice behavior. By introducing the concept of aspiration level which is specific to each person, we develop a novel model of the problem in a parallel-link network and investigate the properties of the boundedly rational user equilibrium (BRUE) state. Conditions for ensuring the existence and uniqueness of the BRUE solution are derived. A solution method is proposed to find the unique BRUE state. Extensions to general networks are conducted. Numerical examples are presented to demonstrate the theoretical analyses. 相似文献
5.
The paper proposes a multi-class control scheme for freeway traffic networks. This control scheme combines two control strategies, i.e. ramp metering and route guidance, in order to reduce the total time spent and the total emissions in a balanced way. In particular, the ramp metering and route guidance controllers are feedback predictive controllers, i.e. they compute the control actions not only on the basis of the measured system state, but also on the basis of the prediction of the system evolution, in terms of traffic conditions and traffic emissions. Another important feature of the controllers is that they have a multi-class nature: different classes of vehicles are considered and specific control actions are computed for each class. Since the controllers are based on a set of parameters that need to be tuned, the overall control framework also includes a module to properly determine the gains of the controllers. The simulation analysis reported in the paper shows the effectiveness of the proposed control framework and, in particular, the possibility of implementing control policies that are specific for each vehicle type. 相似文献
6.
Peter Bonsall 《Transportation》1992,19(1):1-23
The paper begins by reviewing what is known about route choice processes and notes the mismatch between this knowledge and the route choice assumptions embedded in the most widely used assignment models. Empirical evidence on the influence of route guidance advice on route choice is reviewed and, despite its limited nature, is seen to suggest that users are reluctant to follow advice unless they find it convincing and that, the more familiar they are with the network, the less likely they are to accept advice. Typically only a small minority of journeys are made in total compliance with advice.Results from an interactive route choice simulator (IGOR) are summarised and are seen to reveal that compliance depends on the extent to which the advice is corroborated by other factors, on the drivers' familiarity with the network and on the quality of advice previously received. It is noted that the IGOR results are in a form which would enable response models to be calibrated.Recent approaches to the modelling of route choice in the context of guidance are discussed. Some are seen to make simplifying assumptions which must limit the relevance of their results; most make no allowance for the fact that drivers are unlikely to comply with all advice and several are not able to represent the benefits which guidance might bring in the context of sporadic congestion or incidents.As an alternative, a two phase model comprising a medium term strategic equilibrium and a day-specific simulation with explicit representation of driver response is proposed.Updated and extended from an earlier version published in theProceedings of the Japan Society of Civil Engineers (JSCE No 425/IV-4, 1991-1). 相似文献
7.
In this paper, we macroscopically describe the traffic dynamics in heterogeneous transportation urban networks by utilizing the Macroscopic Fundamental Diagram (MFD), a widely observed relation between network-wide space-mean flow and density of vehicles. A generic mathematical model for multi-reservoir networks with well-defined MFDs for each reservoir is presented first. Then, two modeling variations lead to two alternative optimal control methodologies for the design of perimeter and boundary flow control strategies that aim at distributing the accumulation in each reservoir as homogeneously as possible, and maintaining the rate of vehicles that are allowed to enter each reservoir around a desired point, while the system’s throughput is maximized. Based on the two control methodologies, perimeter and boundary control actions may be computed in real-time through a linear multivariable feedback regulator or a linear multivariable integral feedback regulator. Perimeter control occurs at the periphery of the network while boundary control occurs at the inter-transfers between neighborhood reservoirs. To this end, the heterogeneous network of San Francisco is partitioned into three homogeneous reservoirs and the proposed feedback regulators are compared with a pre-timed signal plan and a single-reservoir perimeter control strategy. Finally, the impact of the perimeter and boundary control actions is demonstrated via simulation by the use of the corresponding MFDs and other performance measures. A key advantage of the proposed approach is that it does not require high computational effort and future demand data if the current state of each reservoir can be observed with loop detector data. 相似文献
8.
We generalize the notions of user equilibrium, system optimum and price of anarchy to non-atomic congestion games with stochastic demands. In this generalized model, we extend the two bounding methods from Roughgarden and Tardos (2004) and Correa et al. (2008) to bound the price of anarchy, and compare the upper bounds we have obtained. Our results show that the price of anarchy depends not only on the class of cost functions but also demand distributions and, to some extent, the network topology. The upper bounds are tight in some special cases, including the case of deterministic demands. 相似文献
9.
Evaluating the benefits of a combined route guidance and road pricing system in a traffic network with recurrent congestion 总被引:2,自引:0,他引:2
When drivers do not have complete information on road travel time and thus choose their routes in a stochastic manner or based on their previous experience, separate implementations of either route guidance or road pricing cannot drive a stochastic network flow pattern towards a system optimum in a Wardropian sense. It is thus of interest to consider a combined route guidance and road pricing system. A road guidance system could reduce drivers' uncertainty of travel time through provision of traffic information. A driver who is equipped with a guidance system could be assumed to receive complete information, and hence be able to find the minimum travel time routes in a user-optimal manner, while marginal-cost road pricing could drive a user-optimal flow pattern toward a system optimum. Therefore, a joint implementation of route guidance and road pricing in a network with recurrent congestion could drive a stochastic network flow pattern towards a system optimum, and thus achieve a higher reduction in system travel time. In this paper the interaction between route guidance and road pricing is modeled and the potential benefit of their joint implementation is evaluated based on a mixed equilibrium traffic assignment model. The private and system benefits under marginal-cost pricing and varied levels of market penetration of the information systems are investigated with a small and a large example. It is concluded that the two technologies complement each other and that their joint implementation can reduce travel time more efficiently in a network with recurrent congestion. 相似文献
10.
Recently there has been much interest in understanding macroscopic fundamental diagrams of stationary road networks. However, there lacks a systematic method to define and solve stationary states in a road network with complex junctions. In this study we propose a kinematic wave approach to defining, analyzing, and simulating static and dynamic traffic characteristics in a network of two ring roads connected by a 2 × 2 junction, which can be either an uninterrupted interchange or a signalized intersection. This study is enabled by recently developed macroscopic junction models of general junctions. With a junction model based on fair merging and first-in-first-out diverging rules, we first define and solve stationary states and then derive the macroscopic fundamental diagram (MFD) of a stationary uninterrupted network. We conclude that the flow-density relationship of the uninterrupted double-ring network is not unique for high average network densities (i.e., when one ring becomes congested) and unveil the existence of infinitely many stationary states that can arise with a zero-speed shockwave. From simulation results with a corresponding Cell Transmission Model, we verify that all stationary states in the MFD are stable and can be reached, but show that randomness in the retaining ratio of each ring drives the network to more symmetric traffic patterns and higher flow-rates. Furthermore we model a signalized intersection as two alternate diverge junctions and demonstrate that the signalized double-ring network can reach asymptotically periodic traffic patterns, which are therefore defined as “stationary” states in signalized networks. With simulations we show that the flow-density relation is well defined in such “stationary” states, and asymptotic traffic patterns can be impacted by signal cycle lengths and retaining ratios. But compared with uninterrupted interchanges, signalized intersections lead to more asymmetric traffic patterns, lower flow-rates, and even gridlocks when the average density is higher than half of the jam density. The results are consistent between this study and existing studies, but the network kinematic wave model, with appropriate junction models, is mathematically tractable and physically meaningful. It has offered a more complete picture regarding the number and type of stationary states, their stability, and MFD in freeway and signalized networks. 相似文献
11.
Song Gao Emma Frejinger Moshe Ben-Akiva 《Transportation Research Part A: Policy and Practice》2011,45(9):916-926
Real-time traffic information is increasingly available to support route choice decisions by reducing the travel time uncertainty. However it is likely that a traveler cannot assess all available information on all alternative routes due to time constraints and limited cognitive capacity. This paper presents a model that is consistent with a general network topology and can potentially be estimated based on revealed preference data. It explicitly takes into account the information acquisition and the subsequent path choice. The decision to acquire information is assumed to be based on the cognitive cost involved in the search and the expected benefit defined as the expected increase in utility after the search. A latent class model is proposed, where the decision to search or not to search and the depth of the search are latent and only the final path choices are observed. A synthetic data set is used for the purpose of validation and ease of illustration. The data are generated from the postulated cognitive-cost model, and estimation results show that the true values of the parameters can be recovered with enough variability in the data. Two other models with simplifying assumptions of no information and full information are also estimated with the same set of data with significantly biased path choice utility parameters. Prediction results show that a smaller cognitive cost encourages information search on risky and fast routes and thus higher shares on those routes. As a result, the expected average travel time decreases and the variability increases. The no-information and full-information models are extreme cases of the more general cognitive-cost model in some cases, but not generally so, and thus the increasing ease of information acquisition does not necessarily warrant a full-information model. 相似文献
12.
Suppose that in an urban transportation network there is a specific advanced traveler information system (ATIS) which acts for reducing the drivers' travel time uncertainty through provision of pre‐trip route information. Because of the imperfect information provided, some travelers are not in compliance with the ATIS advice although equipped with the device. We thus divide all travelers into three groups, one group unequipped with ATIS, another group equipped and in compliance with ATIS advice and the third group equipped but without compliance with the advice. Each traveler makes route choice in a logit‐based manner and a stochastic user equilibrium with multiple user classes is reached for every day. In this paper, we propose a model to investigate the evolutions of daily path travel time, daily ATIS compliance rate and yearly ATIS adoption, in which the equilibrium for every day's route choice is kept. The stability of the evolution model is initially analyzed. Numerical results obtained from a test network are presented for demonstrating the model's ability in depicting the day‐to‐day and year‐to‐year evolutions. 相似文献
13.
Bi Yu Chen William H.K. Lam Agachai SumaleeQingquan Li Zhi-Chun Li 《Transportation Research Part A: Policy and Practice》2012,46(3):501-516
To assess the vulnerability of congested road networks, the commonly used full network scan approach is to evaluate all possible scenarios of link closure using a form of traffic assignment. This approach can be computationally burdensome and may not be viable for identifying the most critical links in large-scale networks. In this study, an “impact area” vulnerability analysis approach is proposed to evaluate the consequences of a link closure within its impact area instead of the whole network. The proposed approach can significantly reduce the search space for determining the most critical links in large-scale networks. In addition, a new vulnerability index is introduced to examine properly the consequences of a link closure. The effects of demand uncertainty and heterogeneous travellers’ risk-taking behaviour are explicitly considered. Numerical results for two different road networks show that in practice the proposed approach is more efficient than traditional full scan approach for identifying the same set of critical links. Numerical results also demonstrate that both stochastic demand and travellers’ risk-taking behaviour have significant impacts on network vulnerability analysis, especially under high network congestion and large demand variations. Ignoring their impacts can underestimate the consequences of link closures and misidentify the most critical links. 相似文献