首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
文章通过Nastran有限元分析软件,对各工况下,某微卡前悬架上摆臂应力情况进行分析,确定失效原因。并对前悬架上摆臂进行结构优化和道路可靠性试验验证,从而满足设计的强度及可靠性要求。  相似文献   

2.
采用载荷分布预分析技术,对某MPV汽车后桥进行了有限元分析,得到了该后桥在静载、制动、转向及扭转4种工况下的应变云图和张量图。通过分析应变云图和张量图,确定了该后桥的关键受载部位及其主应力方向,然后处理标定试验数据,线性回归出后桥载荷一应变的函数关系,并通过实车道路试验结果分析验证了通过有限元分析确定出的后桥应变传感器贴片位置的正确性。  相似文献   

3.
以某双离合变速器(DCT)为研究对象,文章提出了基于整车驻车试验的DCT箱体强度及疲劳寿命预测方法。基于ADAMS建立目标车型,包含驻车系统整车冲击载荷仿真的系统模型,通过对不同驻车工况进行动力学仿真,获取对应工况下,驻车系统冲击载荷时域数据并与试验对标,验证了仿真结果的准确性。搭建DCT传动系统总成有限元模型,结合多体动力学仿真的整车冲击扭矩峰值及驻车系统的耐久试验载荷谱,分析了DCT箱体的强度及耐久性能,为DCT结构设计的正向开发及校验提供参考。  相似文献   

4.
提出了一种道路模拟试验与CAE相结合的汽车耐久性分析方法.采用道路模拟技术复现实际路面状况,迭代得到的轮胎激励信号,作为CAE动力学分析的边界条件.建立整车刚柔耦合模型,仿真获取关键零件连接点的载荷历程.以某汽车的下摆臂作为实例,采用有限元分析的惯性释放法,求得其应力.据此进一步对其载荷状态做二轴性分析,并选择合适的多轴疲劳损伤模型进行多轴疲劳分析.分析结果与路试结果对比表明,该方法可在设计阶段有效预估汽车关键零部件在非比例载荷作用下的疲劳寿命.  相似文献   

5.
麦弗逊悬架结构在极限工况下的强度设计尤其关键.文章针对某款车的麦弗逊前悬架结构,通过试验和仿真相结合的方法进行前悬架系统结构及接口设计.其中Clevis支架与控制臂本体,采用基于LS-DYNA软件考虑应力三轴度的Gissmo失效本构搭建有限元模型,分析设计考虑安全碰撞的Clevis支架.结果显示,该悬架结构在极限条件下...  相似文献   

6.
为优化某商用车驾驶室强度性能,文章基于有限元方法对驾驶室进行了强度分析,同时采集试验场实车驾驶室应力应变,试验结果显示,特定路面钣金位置应变很大,对驾驶室结构进行了局部优化,CAE分析结果满足要求及路试考核通过。  相似文献   

7.
悬架是汽车中的重要部件,应具有足够的强度和刚度,以汽车双横臂前悬架为例,首先在UG中建立了前悬架几何模型,然后在ANSYS软件中进行网格划分,并施加载荷和约束,最后在几种典型工况下,对前悬架中的主要部件进行了有限元分析计算。  相似文献   

8.
本文以某型汽车多连杆悬架横拉杆为模型进行载荷谱时域历程采集、静强度校核、疲劳仿真分析。在横拉杆上选择合适位置粘贴应变片,组全桥测量轴向应变。在拉压力试验机上标定出横拉杆轴向受力与测点应变之间的线性关系。根据可靠性试验规范采集一个完整循环的横拉杆载荷谱,为疲劳分析提供力信号输入。建立横拉杆有限元模型,对比实测应变与仿真输出对应点应变,修改验证模型,保证有限元模型的准确性。以实测载荷谱为输入对横拉杆进行疲劳仿真分析,验证横拉杆是否满足可靠性要求。  相似文献   

9.
根据汽车悬架下摆臂所受的极限静载工况下的结构应力分析、道路载荷作用下的疲劳损伤分析和常用行驶工况下的疲劳寿命等分析,采用CAE与台架和道路试验相结合的方法,从多体动力学得到载荷值,应用“惯性释放法”获得不同工况下,下摆臂的应力分布特征;据此确定易出现疲劳损伤的部位,为下摆臂探索出一种一体化疲劳寿命分析方法;采用该方法对某型汽车下摆臂进行分析的结果表明,受到的应力下降1OMPa时,疲劳寿命约能提高1倍.  相似文献   

10.
《汽车工程》2021,43(9)
本文中以不同地域和车型的实际用户运行数据为基础,通过提取制动工况片段对制动时间、制动距离和制动强度分布进行分析;根据台架试验数据,建立制动强度与工况载荷之间的关系,实现用户运行数据向工况载荷的转换,并分析用户载荷下典型部件的损伤和损伤贡献,进一步将用户工况与标准工况在频次和损伤方面进行对比,结果表明现有的可靠性试验规范难以有效复现用户实际制动水平。因此建议及早制定更加合理的电子助力制动系统可靠性评价规范。  相似文献   

11.
前摆臂作为麦弗逊前悬架的重要零部件,担负着至关重要的作用,其结构除满足强度要求外,还要承受一定的屈曲性能,需提前破坏弯曲,起到保护副车架的作用,(超)高强钢与单片式的前摆臂已经成为行业发展的主流结构。文章介绍了前摆臂屈曲性能要求、屈曲分析流程、分析方法、分析工况等,并以某开发车型的前摆臂为例,利用HyperMesh建立其有限元模型,在ABAQUS中进行屈曲计算,研究总结出一系列的屈曲优化方法,计算结果表明优化方法有效,对前摆臂屈曲设计有重要的指导作用。  相似文献   

12.
以某C级轿车为研究对象,建立考虑强非线性特征的整车极限误用工况全柔性仿真模型,按规范进行两种误用试验的仿真研究,得到轴头载荷,并与同工况实车测试进行对比研究。模型计算精度达到设计要求,表明这种在车型开发早期获取误用试验轴头载荷的仿真方法有效可行。  相似文献   

13.
建立了某重型商用车车架及前端牵引装置的有限元模型,进行相应的扭转及牵引工况CAE分析,设计出满足要求的前牵引支座。确定了文章所建CAE分析模型与试验结果的差异,得出CAE分析时采用线性材料建模,在未达到材料屈服强度前,CAE应力值可以较准确的预测零件结构的应力,达到材料屈服强度后,CAE应力值比测试应力值稍大,且随着载荷增大CAE值与测试值的差异逐渐增大,该结论可以推广到其它CAE分析中,具有较高的参考价值。  相似文献   

14.
全地形越野车行驶工况极其复杂,悬架为底盘的主要部件,后摆臂为轮边系统与车体系统重要的连接部件,后摆臂的结构设计决定悬架系统的稳定性。基于此,以某款全地形越野车悬架系统为研究对象,运用三维软件对后摆臂进行结构设计,并分析后摆臂的使用工况,运用有限元分析摆臂结构强度,验证该设计是否满足复杂工况的使用要求,以保证该款越野车后摆臂结构稳定与安全。  相似文献   

15.
陈小华 《时代汽车》2023,(8):119-122
本文旨在通过某中卡驾驶室前悬置的结构优化设计过程,阐述如何在给定空间,根据车辆结构的使用要求寻找出其材料的最佳布局方式,从而使车辆结构最大限度地实现轻量化。传统结构优化设计过程大致为假设-分析-校核-重新设计,有时这个过程需要重复多次,很难找出最佳设计方案,用材裕度一般较大。本文前悬置的结构优化设计中,直接优化出其结构材料的最佳布局从而实现前悬置的轻量化。其优化设计方法过程如下:确定前悬置相关的极限强度工况(七种)和安全法规要求的前拍工况,运用多体软件建立中卡整车模型,分析提取极限强度工况载荷;建立驾驶室前拍工况模型,计算提取前拍工况载荷;建立前悬置的优化模型,施加前面提取的工况载荷,以优化设计区域密度作为优化设计变量,把各工况下的计算应力和体积作为响应,把材料屈服强度作为约束边界,以体积最小作为优化目标进行优化分析,从而得出前悬置结构材料的最佳布局方式。根据优化结果,设计人员设计出的样件一次性通过了实际强度试验验证和碰撞安全前拍工况的摸底试验,这一优化方法大大地缩短了前悬置结构的开发周期和试验时间,也节省了开发试验费用。也说明CAE技术在产品概念开发和产品设计阶段具有重要的指导参考作...  相似文献   

16.
某款新能源乘用车在开发的过程中,在样车阶段对整车进行了误用工况试验;为了研究车辆在误用工况下的耐久性能,对车辆试验前后的四轮定位、底盘悬架接附点扭矩、胎压、车高分别进行了测量与记录,并在试验后拆解底盘前后悬架对各个零部件的状态进行了检查;为了研究在误用工况中车辆在不同车速车速、不同配载与不同地形下底盘悬架各零部件的受力,对前后悬架各零部件进行了金属电阻应变片粘贴,根据惠斯通电桥原理对零部件进行标定,并在试验中采集了贴片处的数据;本文的研究,对底盘悬架零部件强度性能以及耐久性能的设计提供了重要的参考。  相似文献   

17.
采用Pro/E软件的MECHANICA模块,对踏板摩托车车架进行了强度分析,找出影响强度及刚度的因素及改进车架强度和刚度的方法,通过对车架施加不同的工况载荷,分析计算结果的应力云和应变云,找出不同工况载荷下车架的危险截面,作为设计开发过程中的参考,根据有限元分析结果修正模型设计,达到最佳强度的车架设计。  相似文献   

18.
以某重型载货汽车为研究对象,提出一种基于车轴位移响应的耐久性虚拟试验方法.该方法首先采集车轴位置的加速度响应;建立基于车轴位移响应驱动的整车多体动力学刚柔耦合模型;接着基于上述试验和刚柔耦合模型复现整车实际道路的载荷历程,预测整车及其关键零部件的疲劳寿命.最后,对其前悬架左减振器支架进行的分析,验证了所提出的试验方法的有效性.  相似文献   

19.
为解决下摆臂加强板断裂问题,建立下摆臂及其连接件有限元分析模型,对其进行不同工况下耐久性应力幅值分析,得出相应工况应力集中点,与实际断裂位置相吻合;针对应力集中位置对加强板结构进行优化,优化后下摆臂在不同工况下的应力幅值均优于优化前,且在前后方向耐久工况下应力幅值降低最多;对下摆臂在不同工况下加载点位移进行校核,优化后...  相似文献   

20.
文章以Wonder7号铝合金车轮为研究对象,在CATIA软件中建立赛车车轮的三维模型,并导入到ANSYS Workbench软件中生成轮辋和轮辐的几何模型。根据计算极限工况下,对Wonder7号车轮进行受力分析,并对车轮的受力载荷进行确定。建立车轮的有限元模型并进行有限元分析。通过仿真得出车轮的受力分布云图,寻找出产品的结构缺陷及失效位置,得到车轮的等效应力云图和等效应变图。根据所得赛车车轮相应的应力分布情况,对其静强度进行了分析,为车轮设计提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号