共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimal Linear Preview Control of Active Vehicle Suspension 总被引:10,自引:0,他引:10
Aleksander HA 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》1992,21(1):167-195
The problem of linear preview control of vehicle suspension is considered as a continuous time stochastic optimal control problem. In the proposed approach minimal a priori information about the road irregularities is assumed and measurement errors are taken into account. It is shown that estimation and control issues can be decoupled. The problem formulation and the analytical solution are given in a general form and hence they apply to other problems in which the system disturbances are unknown a priori, even in a stochastic sense, but some preview information is possible.
The solution is applied to a two-degree-of-freedom (2-DOF) vehicle model. The effects of preview information on ride comfort, road holding, working space of the suspension and power requirements are examined in time and frequency domains. The results show that the greatest potential is for improving road holding properties. This effect could not have been observed in previous studies based on a 1-DOF vehicle model. It is also demonstrated that the presence of preview drastically reduces power requirements, thus relieving the performance versus actuator power dilemma. 相似文献
The solution is applied to a two-degree-of-freedom (2-DOF) vehicle model. The effects of preview information on ride comfort, road holding, working space of the suspension and power requirements are examined in time and frequency domains. The results show that the greatest potential is for improving road holding properties. This effect could not have been observed in previous studies based on a 1-DOF vehicle model. It is also demonstrated that the presence of preview drastically reduces power requirements, thus relieving the performance versus actuator power dilemma. 相似文献
2.
R. G. Langlois R. J. Anderson 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》1995,24(1):65-97
The potential performance improvement using preview control for active vehicle suspension was first recognized in the late nineteen sixties. All work done since that time has been based on optimal control theory using simple vehicle models.
In this article, the performance of quarter vehicle preview controllers when applied to a real off-road vehicle is simulated using both two degree of freedom quarter and ten degree of freedom full vehicle models. The results, which are compared with non-preview active and conventional passive suspensions, confirm that preview control reduces vertical acceleration of the body centre of gravity, which results in improved ride quality. Further, reductions in pitch and roll motion result from smaller vertical displacements of the vehicle quarters. Coupling between quarters, through the vehicle body, appears to have a smoothing effect on the control.
As an alternative to optimal control theory based controllers, a simple ad hoc preview controller based on isolating the vehicle body from dynamic loads transmitted through the suspension is proposed. Simulation results show that such a controller outperforms the optimal control theory based controllers over small discrete disturbances but responds poorly to disturbances encountered from other than steady state. 相似文献
In this article, the performance of quarter vehicle preview controllers when applied to a real off-road vehicle is simulated using both two degree of freedom quarter and ten degree of freedom full vehicle models. The results, which are compared with non-preview active and conventional passive suspensions, confirm that preview control reduces vertical acceleration of the body centre of gravity, which results in improved ride quality. Further, reductions in pitch and roll motion result from smaller vertical displacements of the vehicle quarters. Coupling between quarters, through the vehicle body, appears to have a smoothing effect on the control.
As an alternative to optimal control theory based controllers, a simple ad hoc preview controller based on isolating the vehicle body from dynamic loads transmitted through the suspension is proposed. Simulation results show that such a controller outperforms the optimal control theory based controllers over small discrete disturbances but responds poorly to disturbances encountered from other than steady state. 相似文献
3.
A simple and convenient matrix expression is derived for the performance index in the case of a linear vehicle model with two degrees of freedom and a preview active suspension, subject to a unit step road input and employing optimal control. The usual quadratic integral-type performance index is assumed and the effect of an additional form of constraint is described briefly. The effects of preview time on the performance index and the optimal feed-forward control are illustrated graphically for a particular example. 相似文献
4.
A. G. Thompson C. E. M. Pearce 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2001,35(1):55-66
A simple and convenient matrix expression is derived for the performance index in the case of a linear vehicle model with two degrees of freedom and a preview active suspension, subject to a unit step road input and employing optimal control. The usual quadratic integral-type performance index is assumed and the effect of an additional form of constraint is described briefly. The effects of preview time on the performance index and the optimal feed-forward control are illustrated graphically for a particular example. 相似文献
5.
6.
7.
8.
9.
N. Louam D.A. Wilson R.S. Sharp 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》1992,21(1):39-63
The problem of deriving control laws which minimize specified performance indices for a vehicle moving on a rough surface with preview of the surface elevation is considered. The approach is based on linear optimal tracking theory and consequently the system elements are taken to be linear and the performance index is constrained to be of quadratic form.
The ideas of overtaking optimality are applied to the problem in order to achieve a closed form solution for the control. Then, using the control laws derived, computer simulations of performance are conducted and time histories are shown. In the absence of limitations on either processing or actuator speeds, and for cases in which the preview is sufficient to give good control laws, the value of the preview in enhancing vehicle suspension performance is assessed. Comparisons are made with results in the literature. 相似文献
The ideas of overtaking optimality are applied to the problem in order to achieve a closed form solution for the control. Then, using the control laws derived, computer simulations of performance are conducted and time histories are shown. In the absence of limitations on either processing or actuator speeds, and for cases in which the preview is sufficient to give good control laws, the value of the preview in enhancing vehicle suspension performance is assessed. Comparisons are made with results in the literature. 相似文献
10.
针对汽车制动过程中质量转移而使最大制动力下降的问题,提出利用主动悬架系统减小汽车动态车轮载荷的方法。通过模拟分析得到,利用主动悬架系统可以有效降低汽车由于质量转移而引起车轮动态轴荷的改变量,限制了汽车最大制动力的下降,是解决制动力下降的一个比较有效的方法。 相似文献
11.
汽车主动悬架最优控制:采用频域计权形式性能指标函数 总被引:21,自引:0,他引:21
本文从提高汽车的乘坐舒适性角度出发,研究了主动悬架的最优控制问题。根据坐位人体的振动响应特性构造了频域计权形式二交型性能指标函数。 相似文献
12.
13.
14.
讨论了预见控制在列车车辆主动悬挂系统中的应用,分析了预见控制的设计方法,指出如何利用未来信息,在一个11个自由度的列车车辆模型的基础上对预见控制进行仿真研究,结果表明预见控制具有良好的控制效果。 相似文献
15.
16.
17.
18.
主动悬架系统对汽车加速性能改善分析 总被引:2,自引:0,他引:2
针对前轴驱动汽车加速过程中质量转移而使最大驱动力下降的问题,提出了利用主动悬架系统减小汽车车轮动态载荷对其进行改善的方法,并进行了控制系统的设计。模拟分析表明,利用主动悬架系统可以有效地降低前轴驱动汽车由于质量转移而引起的车轮动载荷的改变,是解决加速过程中驱动力下降的一个比较有效的方法。 相似文献
19.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(2-3):217-235
In this study, a variable geometry active suspension system is considered. Actuation is employed to vary the leverage ratio between spring/damper unit and road wheel assembly. Since actuation is substantially perpendicular to the main suspension unit forces, work is primarily done only against frictional resistances to motion and the systems have inherently low force and energy requirements. Mechanical design and control system design involving proportional/differential elements or neural networks are discussed. System performance in self-levelling, free vibrations and manoeuvring of a theoretical vehicle are calculated. Good control of roll angle and jacking responses are predicted and energy economy is confirmed by these trials, which include a detailed consideration and modelling of the electrical actuators. The results reinforce the notion that variable geometry schemes have practical applications potential and are worthy of further research effort. 相似文献
20.
C. Pilbeam R.S. Sharp 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》1996,25(3):169-183
Two possible layouts of a slow-active suspension model are analysed. Optimal control laws for different actuator bandwidths and various amounts of road preview are generated, and estimates of power consumption are made. Higher bandwidth systems (10Hz) require less preview to obtain a given level of performance than those with a lower bandwidth (3Hz) but use more energy in doing so. Similar performance is available from the two systems considered, although the second uses considerably less energy to obtain that performance. 相似文献