首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 343 毫秒
1.
本文中提出了一种通过制动或换道来实现的追尾避撞控制策略。首先通过模拟驾驶仪采集驾驶员避免追尾碰撞的换道时机、制动强度、最大加速度变化率和反应时间,构建了驾驶员制动避撞行为和换道避撞行为模型;然后建立基于制动安全距离、碰撞时间和换道安全距离的危险估计模型,实时计算行车发生追尾碰撞的危险等级并据此选取相应的主动避撞介入时机和方式;最后依据碰撞时间和结合前馈控制的线性状态反馈控制方法,分别建立制动避撞策略和换道避撞策略。Matlab仿真和实车试验验证结果表明,该避撞控制策略能通过自主换道或制动避免中低速跟车行驶时的追尾碰撞。  相似文献   

2.
为了弥补现有汽车避撞控制策略以及碰撞风险评价指标单一的不足,提出转向和制动协调的主动避撞控制系统。首先规划了五次多项式换道路径,在对其理论分析的基础上得到转向临界避撞距离和与目标车道车辆的安全距离约束。其次,考虑道路附着系数和系统延迟的影响,基于制动过程给出制动临界避撞距离,并以纵向行驶安全系数ξ和碰撞时间倒数T-1TC划分安全行驶区域,利用驾驶人实车跟车数据标定稳态跟随/定速巡航区域的阈值。随后,通过转向/制动临界避撞距离的对比给出2种避撞方式的安全收益范围。最后搭建Simulink/CarSim联合仿真模型,并对其进行不同初始条件下的避撞仿真试验。研究结果表明:转向操作在制动距离不足时仍是有效的;当主车高速近距离接近静止前车时,主车可以顺利采取转向换道动作,而常规ACC系统在2.5 s处的车间相对距离为-0.76 m,事实上已经发生了碰撞;当相邻车道前车与主车纵向间距不满足换道安全距离约束时,避撞控制系统进入紧急制动模式,最大制动减速度达到-0.8gg为重力加速度),实际最小车间距为5.1 m;通过转向和制动的协调动作,充分发挥了车辆的避撞潜力;ξT-1TC指标的融合,可以更好地评估碰撞风险并实现不同控制模式的转换,在保证行车安全的同时可避免过分制动给乘客造成的紧张感。  相似文献   

3.
针对交叉路口转弯车辆与横穿行人碰撞的危险场景,提出了一种综合碰撞时间和制动距离的避撞策略.首先,建立转弯车辆与行人的位置关系模型,确定行人目标跟踪方法,然后,通过比较行人进入转弯区域时间、避撞剩余时间、行人离开转弯区域时间的关系确定行人是否为危险目标,最后,建立此种场景下的制动安全距离模型并确定了避撞策略.通过PreS...  相似文献   

4.
为弥补传统风险评价指标对相对速度较小的跟车场景危险水平评价能力的不足,减少跟车场景中追尾事故的发生,提出了跟车场景潜在风险的概念。将假定前车以较大制动减速度减速条件下的风险称为潜在风险,并构建了代表驾驶人在潜在危险跟车场景下进行避撞操作需满足的最大反应时间的参数时间裕度(TM)。由于追尾危险工况中常见采取的避撞操作可分为制动和制动转向两大类,分别对典型制动避撞过程和制动转向避撞过程进行了分析,从而推导出分别针对2种跟车潜在危险场景的TM计算方式。通过自动筛选与人工筛选结合,获得了中国自然驾驶数据库(China-FOT)中具有中国驾驶人特点的制动避撞危险工况87个和转向制动避撞危险工况40个进行分级,并基于图像处理方法提取了前车制动开始时刻的TM值,从而得到跟车场景潜在风险两级危险域的划分。结果表明:制动避撞场景下,本车车速过低和过高时,TM值的变化均不明显;而在制动转向避撞场景中,只有速度较高时阈值才保持不变。通过对正常驾驶视频的分析,引入对比组共计正常跟车制动工况163例和正常跟车转向变道工况151例的车头时距(THW)值,其统计分析结果与支持向量机分类结果均难以清晰描述跟车场景危险水平与本车速度之间的关系。为研究跟车场景潜在风险评价在自动驾驶中的应用,对于制动避撞场景,在设定TM值不变和相对速度不变的条件下,分别对基于TM的最小相对距离和距离碰撞时间(TTC)值进行了仿真,仿真结果显示,相比于TTC而言,TM的评价稳定性受相对速度影响小,在自动驾驶跟车策略开发和避免其发生责任追尾事故中有重要应用价值。  相似文献   

5.
研究不同预警信息发布时间下,不同性别驾驶人对于交叉口迎头侧面避撞情景驾驶行为影响规律,为提高车辆避撞预警系统功效性提供理论依据.基于汽车驾驶模拟器设计实验,招募具有稳定驾驶能力的驾驶人45名,采集7种预警信息发布时间(2.5~5.5 s),将无预警作为控制组,采用C#编程提取能够表征驾驶行为的变量.用方差分析和线性回归方法分析在交叉口迎头侧面碰撞情景下不同预警信息发布时间对驾驶人的制动时间、最大减速度、测试车辆与冲突车辆的最小距离的影响.结果表明,预警信息发布越早,驾驶人的制动时间越长,最大减速度越小,说明较早发布预警信息可以减缓驾驶人采取制动措施的剧烈程度.同时,预警信息发布较早,可以增大车辆间的最小间距,降低碰撞事故发生的可能性.此外,女性驾驶人的驾驶行为比男性驾驶人更加保守.  相似文献   

6.
为了提高智能汽车的主动安全性,提出3种不同的自动紧急转向避撞跟踪控制方法。首先建立汽车避撞简化模型,对制动、转向及两者相结合的3种不同避撞方式进行对比分析。其次,为深入研究汽车避撞过程中的实际响应,建立包含转向、制动及悬架3个子系统耦合特性的底盘18自由度统一动力学模型,并进行相关试验验证。随后构建智能汽车自动紧急转向避撞控制框架,对五次多项式参考路径和七次多项式参考路径的横摆角速度和横摆角加速度进行对比分析。接着以线性2自由度转向动力学模型为参考对象,对最优控制四轮转向、最优控制前轮转向、前馈与反馈控制相结合的前轮转向3种不同的跟踪控制系统分别进行设计。最后,以汽车底盘18自由度统一动力学模型为研究对象,对上述3种避撞控制系统进行仿真试验对比分析。研究结果表明:与制动避撞相比而言,转向避撞所需的纵向距离有较大降低,随着车速的增加和路面附着系数的越低,效果越明显;七次多项式参考路径比五次多项式参考路径的避撞过渡过程更为平缓,当实际车速与控制器所用车速不一致时,前者避撞性能表现更优;最优四轮转向控制系统在高、低2种不同附着路面都具有较好的避撞效果,最优前轮转向控制系统次之,而前馈与反馈相结合的前轮转向控制系统在低附着路面上则表现出严重的失稳。  相似文献   

7.
为了弥补现有汽车避撞控制策略以及碰撞风险评价指标单一的不足,提出转向和制动协调的主动避撞控制系统。首先规划了五次多项式换道路径,在对其理论分析的基础上得到转向临界避撞距离和与目标车道车辆的安全距离约束。其次,考虑道路附着系数和系统延迟的影响,基于制动过程给出制动临界避撞距离,并以纵向行驶安全系数ξ和碰撞时间倒数T■划分安全行驶区域,利用驾驶人实车跟车数据标定稳态跟随/定速巡航区域的阈值。随后,通过转向/制动临界避撞距离的对比给出2种避撞方式的安全收益范围。最后搭建Simulink/CarSim联合仿真模型,并对其进行不同初始条件下的避撞仿真试验。研究结果表明:转向操作在制动距离不足时仍是有效的;当主车高速近距离接近静止前车时,主车可以顺利采取转向换道动作,而常规ACC系统在2.5 s处的车间相对距离为-0.76 m,事实上已经发生了碰撞;当相邻车道前车与主车纵向间距不满足换道安全距离约束时,避撞控制系统进入紧急制动模式,最大制动减速度达到-0.8g(g为重力加速度),实际最小车间距为5.1 m;通过转向和制动的协调动作,充分发挥了车辆的避撞潜力;ξ和T■指标的融合,可以更好地评估碰撞风险并实现不同控制模式的转换,在保证行车安全的同时可避免过分制动给乘客造成的紧张感。  相似文献   

8.
为挖掘智能车避撞潜力,基于五次多项式构建含侧向加速度约束的避撞参考路径,基于预瞄转向几何理论实现车辆转向控制,利用线性二次型调节器(LQR)得到期望纵向加速度,在避撞结构基础上,基于碰撞时间(TTC)和跟车时距(THW)预判行车风险,以最大加速度和平均加速度评价主动避撞的乘坐舒适性,以最大横向位置误差和航向角误差评价转向控制路径跟踪精度。不同工况下仿真结果表明,该方法转向稳定性和路径跟踪精度较高,且兼顾了避撞安全性和乘坐舒适性。  相似文献   

9.
由于视线障碍物造成的“鬼探头”事故已经成为当前城市道路交通事故的主要类型之一。针对汽车碰撞视线遮挡条件下横穿的弱势道路使用者(VRU)的场景, 设计了1种基于碰撞时间比和安全制动距离的避撞策略, 建立车辆与VRU的交通状态数学模型, 分析“鬼探头”场景下的制动避撞临界距离。结合临界距离和车辆与VRU的碰撞时间比, 将可以避免碰撞的场景分为3种工况, 分别采用不同的制动减速度, 建立自动紧急制动避撞策略。通过Euro NCAP CPNC测试场景对该策略与传统TTC制动算法进行比较分析。结果表明, 在Euro NCAP CPNC测试场景中, 自车利用该避撞策略在理想情况下能够在更高的车速情况下完成避撞; 在不能避免碰撞的高速行驶工况中较传统TTC算法能够更加有效降低碰撞速度, 同时降低事故重伤风险和死亡风险, 提高车辆的安全性。   相似文献   

10.
针对行人从静止遮挡车辆前方穿出并与主车碰撞的“鬼探头”危险场景,提出一种基于车联网的行人主动避撞系统控制策略。首先,建立主车、遮挡车和行人间相对位置关系模型,通过车车通信获取遮挡车前方的行人状态信息;其次,根据目标进入时间、目标离开时间、碰撞剩余时间和安全避撞时间4个危险状态判断评价指标,建立分级制动策略,并通过下层PID控制调节制动压力实现车辆控制;最后,基于PreScan、CarSim和MATLAB联合仿真平台,搭建该危险场景并验证所提出控制策略的有效性。结果表明,该策略能够实现避撞功能,且性能优于基于宽度触发的行人主动避撞策略。  相似文献   

11.
ABSTRACT

This paper considers the problem of collision avoidance for road vehicles, operating at the limits of friction. A two-level modelling and control methodology is proposed, with the upper level using a friction-limited particle model for motion planning, and the lower level using a nonlinear 3DOF model for optimal control allocation. Motion planning adopts a two-phase approach: the first phase is to avoid the obstacle, the second is to recover lane keeping with minimal additional lateral deviation. This methodology differs from the more standard approach of path-planning/path-following, as there is no explicit path reference used; the control reference is a target acceleration vector which simultaneously induces changes in direction and speed. The lower level control distributes vehicle targets to the brake and steer actuators via a new and efficient method, the Modified Hamiltonian Algorithm (MHA). MHA balances CG acceleration targets with yaw moment tracking to preserve lateral stability. A nonlinear 7DOF two-track vehicle model confirms the overall validity of this novel methodology for collision avoidance.  相似文献   

12.
现有的安全距离模型是基于纵向相对车速或减速度值建立的,没有考虑移动目标的横向运动特性。本文利用移动目标横穿马路的速度、相对位置,建立横向安全距离模型,并提出一种基于横向安全距离模型的主动避障算法。首先,根据横向移动目标横穿马路的速度、相对位置和自车的制动距离建立横向安全距离模型,设计主动避障算法。接着,为计及路面条件对制动效果的影响,引入当前行驶路面估算的附着系数峰值估算最大制动减速度,约束目标避障减速度,并调整制动强度,以适应不同路况的安全避障行驶。最后,以典型横向移动目标骑行者作为研究对象,通过PreScan/Simulink/CarSim联合仿真验证避障算法的有效性。结果表明:基于横向安全距离模型的主动避障算法能有效避免与骑行者碰撞,提高行车的主动安全性。  相似文献   

13.
ABSTRACT

Collision avoidance and stabilisation are two of the most crucial concerns when an autonomous vehicle finds itself in emergency situations, which usually occur in a short time horizon and require large actuator inputs, together with highly nonlinear tyre cornering response. In order to avoid collision while stabilising autonomous vehicle under dynamic driving situations at handling limits, this paper proposes a novel emergency steering control strategy based on hierarchical control architecture consisting of decision-making layer and motion control layer. In decision-making layer, a dynamic threat assessment model continuously evaluates the risk associated with collision and destabilisation, and a path planner based on kinematics and dynamics of vehicle system determines a collision-free path when it suddenly encounters emergency scenarios. In motion control layer, a lateral motion controller considering nonlinearity of tyre cornering response and unknown external disturbance is designed using tyre lateral force estimation-based backstepping sliding-mode control to track a collision-free path, and to ensure the robustness and stability of the closed-loop system. Both simulation and experiment results show that the proposed control scheme can effectively perform an emergency collision avoidance manoeuvre while maintaining the stability of autonomous vehicle in different running conditions.  相似文献   

14.
为实现智能车辆的自主换道操作并满足安全性、舒适性和实时性等约束条件,提出一种针对动态交通环境的换道轨迹规划模型。该模型由道路平面曲线表征模块、路径生成模块以及速度曲线生成模块组成。首先,在道路平面曲线表征模块中,模型基于实时获取的周边道路信息,利用切比雪夫多项式插值法回归拟合出连续可导的道路平面曲线函数,用以保证模型在各种道路平面线形上的普适性。然后,在路径生成模块中,根据换道车辆初始时刻的运动状态,建立一系列多项式方程,并利用牛顿迭代法求解方程未知参数,以此生成连接初始位置和目标位置的换道路径,用以保证换道轨迹的平滑性。最后,在速度曲线生成模块中,以满足防碰撞约束、跟驰加速度约束以及车辆运动状态约束为目标,构建二次规划模型,生成沿着换道路径的车辆速度曲线,用以保证换道轨迹的安全性和舒适性。此外,考虑到周边动态的交通环境,车辆系统在每个时间步内会循环调用提出的模型实时更新换道轨迹,直至车辆到达目标位置。仿真试验结果表明:应用提出的换道轨迹规划模型,车辆能够有效避免与周边动态车辆发生碰撞,成功完成换道;基于二次规划框架,模型优化求解时间明显缩短,满足轨迹规划的实时性和有效性要求。  相似文献   

15.
为了提高智能汽车紧急变道轨迹规划的实时性和适应性,将紧急变道过程分为初始阶段和跟踪阶段,初始阶段的轨迹由优秀驾驶人紧急变道模型产生,跟踪阶段的轨迹采用Sigmoid函数规划出紧急避让路径。首先通过聚类分析处理优秀驾驶人转向操作的实车试验数据,拟合得出紧急变道过程中的方向盘转角随时间的关系(即驾驶人紧急变道模型),作为智能汽车在紧急变道初始阶段不同速度下车辆控制的输入量。然后通过建立与求解约束方程,满足避撞约束、侧向位移约束以及最大侧向加速度约束,得出Sigmoid函数表达式,作为智能汽车在紧急变道过程跟踪阶段的参考路径。最后利用hp自适应伪谱法加入切换点的物理量约束,逼近全局正交多项式的状态量和控制量,自动调整和处理2个阶段的切换点位置和衔接问题,以最小变道距离为目标对跟踪阶段的变道轨迹进行优化。运用PreScan与MATLAB对4种不同工况下的紧急变道轨迹规划进行联合仿真。结果表明:提出的轨迹规划与优化方法在满足各项约束的情况下成功避开障碍物,同时缩短了需要优化的轨迹,优化时间都小于0.9 s,并且与基于多项式函数轨迹规划方法相比,该方法能够以距障碍物较远的距离避开障碍物,在不同的车辆速度、道路曲率和障碍物宽度的复杂工况下具有更好的适应性。  相似文献   

16.
This paper describes a risk management algorithm for rear-side collision avoidance. The proposed risk management algorithm consists of a supervisor and a coordinator. The supervisor is designed to monitor collision risks between the subject vehicle and approaching vehicle in the adjacent lane. An appropriate criterion of intervention, which satisfies high acceptance to drivers through the consideration of a realistic traffic, has been determined based on the analysis of the kinematics of the vehicles in longitudinal and lateral directions. In order to assist the driver actively and increase driver's safety, a coordinator is designed to combine lateral control using a steering torque overlay by motor-driven power steering and differential braking by vehicle stability control. In order to prevent the collision while limiting actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort, the Lyapunov theory and linear matrix inequalities based optimisation methods have been used. The proposed risk management algorithm has been evaluated via simulation using CarSim and MATLAB/Simulink.  相似文献   

17.
紧急避障工况下的驾驶人操作具有响应快且动作幅值较大的特点,传统预瞄驾驶人模型已不能适应紧急避障工况的需求,故考虑实际避撞场景开发相应的驾驶人模型就显得尤为必要。针对此种状况,基于驾驶模拟器,结合紧急避撞工况实际驾驶人操纵数据,提出了一种融合预瞄与势场栅格法的紧急避撞驾驶人模型。首先针对紧急避撞工况下车辆运动特点,建立车辆横、纵向耦合非线性动力学模型,并给出其状态空间方程描述;其次,离线仿真分析紧急避撞系统特征,并结合线性二次型最优控制,建立最优曲率预瞄+跟踪误差反馈驾驶人模型;再者,基于紧急避撞工况下真实驾驶人经验转向行为数据,开发基于势场栅格法的驾驶人模型,为进一步提高驾驶人模型对避障行驶工况的适应性,将基于势场栅格法的驾驶人模型与最优曲率预瞄+跟踪误差反馈驾驶人模型进行融合,并基于Sigmoid函数实现两者输出的权重分配;最后,针对所提出的融合预瞄与势场栅格法的驾驶人模型,开展基于避撞台架的驾驶人在环仿真试验以及实车试验。研究结果表明:在紧急避撞工况下,对比最优曲率预瞄+跟踪误差反馈驾驶人模型,融合预瞄与势场栅格法的驾驶人模型输出的转向动作与实际驾驶人行为较为接近,可在保证避障安全性的前提下,兼顾避障路径跟踪精度与车辆行驶的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号