首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为研究预应力混凝土桥梁的梁体开裂后抗弯刚度变化规律,通过6片1∶5模型试验梁的开裂试验,系统分析了有粘结和无粘结预应力混凝土试验梁在单调加载和重复加载方式下的跨中挠度及抗弯刚度变化规律.试验结果表明,梁体抗弯刚度变化与加载方式有关,重复加载条件下梁体极限承载力明显小于一次单调加载情况.在将试验数据与现行规范对比研究的基础上,指出现行规范规定对预应力混凝土梁开裂后的抗弯刚度下降规律考虑不足,无法满足在役桥梁的技术状态评估需求,并通过引入跨中弯矩修正系数的方法提出了具体的抗弯刚度修正公式.  相似文献   

2.
为了给预应力高强软钢丝加聚合物砂浆加固方法的设计计算与施工张拉控制提供依据,首先通过5根钢丝束张拉试验提出了考虑张拉力损失、由施工扭力换算得到的钢丝束初张力设计计算公式;然后完成了2根预应力高强软钢丝加聚合物砂浆加固矩形梁和1根对比梁的抗弯性能试验,研究了加固梁的抗裂性、抗弯承载力、刚度等性能的提升效果,并探明加固梁的破坏模式;同时定义了加固梁的开裂、屈服和抗弯极限等特征状态,利用理论分析推导出加固梁的开裂、屈服、极限弯矩和开裂、屈服刚度等设计计算公式,并将理论计算结果与试验结果进行了对比。研究结果表明:混凝土梁采用预应力高强软钢丝加复合砂浆加固后,钢丝束越多、相同荷载等级下的裂缝宽度越小,说明预应力软钢丝束能较好地抑制原混凝土结构裂缝的产生和发展;与未加固梁相比,加固梁的抗裂性能提升了60.3%~101%,抗弯承载力提高了17.3%~35.8%,跨中挠度减小了10.4%~27.4%,构件的抗裂性、抗弯承载力和刚度均明显提高;钢丝束初张力设计公式、加固梁在开裂、屈服和极限状态时的特征弯矩以及开裂和钢筋屈服时跨中挠度的理论计算方法均与试验结果吻合较好,且偏于保守,能够满足工程应用的精度要求。  相似文献   

3.
无粘结部分预应力混凝土梁的挠度、裂缝宽度计算   总被引:5,自引:0,他引:5  
首先建立了使用荷载下无粘结部分预应力混凝土梁开裂截面中性轴高度三次方程,从而可以得到相应截面的开裂截面惯性矩及有粘结非预应力钢筋的应力,而后利用中国公路桥梁规范关于部分预应力混凝土受弯构件的挠度验算方法及普通钢筋混凝土受弯构件裂缝宽度验算方法来计算无粘结部分预应力混凝土梁的挠度、裂缝宽度。通过与取自4个不同参考文献的58个实测挠度、3个不同参考文献的93个实测裂缝宽度值与计算挠度、计算裂缝宽度值的  相似文献   

4.
文章通过不锈钢筋混凝土梁与普通钢筋混凝土梁抗弯、抗剪承载力对比试验,比较了两者的破坏过程和各阶段截面变形规律。不锈钢筋混凝土梁在弹性阶段、开裂阶段、破坏阶段的变形与普通钢筋混凝土梁相似;在弹性阶段和开裂初始阶段,跨中截面应变沿高度近似呈直线分布,与平截面假定基本吻合;但接近破坏荷载时,跨中截面应变沿高度分布平截面假定有一定差别;不锈钢筋混凝土梁、普通钢筋混凝土梁开裂弯矩、极限弯矩的实测值与理论值之比没有明显差别,但不锈钢筋混凝土梁实测极限剪力明显高于普通钢筋混凝土梁。鉴于当前不锈钢筋混凝土梁试验资料较少,现行规范计算结果又偏于保守,可暂按《混凝土结构设计规范(GB50010-2010)》进行计算分析,指导不锈钢筋混凝土结构的设计及施工。  相似文献   

5.
为研究高强钢筋活性粉末混凝土(RPC)梁在弯矩作用下的受力特性和其抗弯性能的影响因素,设计制作20根高强钢筋RPC矩形梁进行抗弯承载力试验,分析梁的破坏形态、荷载~挠度曲线、裂缝的发展和分布,研究配筋率和钢筋强度对抗弯性能的影响规律。结果表明:RPC适筋梁的正截面破坏过程与普通混凝土梁相似,表现出良好的延性,少筋梁和无筋梁具有一定的延性;相同钢筋强度RPC梁的开裂弯矩和极限承载力随配筋率增加而增大;相同配筋率时,RPC梁的极限承载力随钢筋强度增加而增大,但钢筋强度对开裂弯矩影响不大;试验过程中,梁的截面应变符合平截面假定;根据简化理论计算的RPC梁极限弯矩值和试验值吻合良好。  相似文献   

6.
通过GFRP筋混凝土梁和普通钢筋混凝土梁的破坏试验,对GFRP筋混凝土梁跨中荷载挠度等受力变形规律进行了试验研究.讨论了GFRP筋混凝土梁有限元建模计算的方法,参照普通钢筋混凝土梁的有限元模型,采用线弹性本构关系模型,对不同配筋率的GFRP筋混凝土抗弯性能进行了计算研究.结果表明,GFRP筋混凝土梁的跨中荷载挠度曲线在...  相似文献   

7.
为了研究预加力对预应力混凝土梁桥开裂梁体刚度效应的影响,以公路桥梁中常用的预应力混凝土小箱梁和T梁为研究对象,基于设计规范中开裂预应力混凝土受弯构件刚度计算原理,采用统计分析、室内试验梁和实桥试验相结合方法,分析开裂预应力混凝土梁受拉区预压应力与梁体短期抗弯刚度的关系。结果表明:小箱梁和T梁受拉区混凝土开裂后,随预加力在受拉区混凝土所产生预压应力的增大,开裂梁体短期抗弯刚度提高;对于开裂预应力混凝土梁桥,采用增设体外预应力钢束的加固方法进行加固,可以有效地提高梁体短期抗弯刚度,较好地抑制梁体受力裂缝的发展。  相似文献   

8.
预应力混凝土梁桥的开裂使得结构安全性、适用性和耐久性降低,对于可靠性降低的桥梁有必要对其承载能力进行评定。主梁开裂会导致结构刚度降低,增加主梁下挠风险。同时,主梁下挠进一步加剧裂缝的产生和发展,降低主梁刚度,二者相互影响,形成恶性循环。在进行开裂后的主梁结构力学性能计算时,不可避免地会遇到开裂后主梁刚度的计算问题。计算主梁开裂后刚度时,目前常见的做法是将原结构构件的刚度按一定规则进行折减,并且整个构件采用统一的开裂后刚度值。这种做法往往与结构的实际刚度偏差较大,且结构在荷载作用下的效应误差亦较大。通过对开裂后主梁的裂缝特征参数进行统计,按照一定规则,将开裂后的主梁划分为若干个开裂区段,采用阶梯刚度简化计算方法分别求出每个开裂区段的有效刚度,形成阶梯刚度模式。阶梯刚度建立后,采用挠度分段积分的方法求出阶梯刚度下的荷载挠度。通过开裂后的PC梁加载试验,对阶梯刚度和阶梯刚度下的挠度计算结果进行了验证。结果表明:采用基于裂缝特征统计参数的阶梯刚度模式,更接近结构开裂后刚度的实际情况;基于阶梯刚度的挠度计算结果与试验挠度值吻合较好;与规范规定的开裂后主梁挠度计算方法相比,在未过分增加计算工作量的前提下,本方法的精度更高,更接近实际情况。  相似文献   

9.
现行公路桥规中未考虑自然环境温度变化对徐变系数的影响,由此可能导致理论计算结果与桥梁实际状态存在较大差异。基于此,该文以规范徐变模型为基础,引入了一种能够考虑环境温度变化的混凝土组合徐变公式,通过数学函数拟合既有温度历史数据预测环境温度随时间变化历程,提出了一种考虑温度修正项的改进型规范徐变公式。以一座主跨为182 m的公路大跨预应力混凝土连续刚构桥为背景,建立徐变模型计算桥梁施工及运营典型阶段的主梁挠度及应力状态,并与规范模型进行对比。结果表明:环境温度变化对徐变系数有较大影响,因桥址地区常年气温较高,温度修正后的徐变系数终值大于规范值;环境温度变化对主梁挠度有较大影响,考虑温度修正项后主梁挠度极大值较规范模型值增长显著,其中跨中挠度最大增幅达到67.1%,建议在进行主梁挠度分析时计入环境变温效应;两种徐变模型下主梁应力随梁长变化趋势一致,应力极大值差异小。  相似文献   

10.
为研究GFRP筋纤维增韧高强轻骨料混凝土梁变形规律,完成10根高强轻骨料混凝土梁受弯性能试验,重点分析了纤维掺量、纵筋种类、GFRP筋配筋率和GFRP筋直径对试件不同受力阶段变形的影响;明确了GFRP筋混凝土受弯构件正常使用阶段应变及应力分布;基于刚度解析法,结合文献中GFRP筋普通混凝土受弯构件挠度实测数据,给出GFRP筋应变不均匀系数计算公式,综合考虑轻骨料、钢纤维及GFRP筋配筋率的影响对其进行修正;基于该公式对各试件使用荷载下的挠度进行计算,并与美国规范(ACI 440.1R-15)、中国规范(GB 50608-2010)和加拿大规范(CSA S806-12,ISIS-M03-07)的计算结果进行对比分析。结果表明:随配筋率的增大,试件破坏模式依次表现为GFRP筋拉断破坏、平衡破坏和混凝土压碎破坏;混凝土压碎破坏试件弯矩-挠度曲线分为开裂前阶段、裂缝开展阶段和受压破坏阶段,而平衡破坏和GFRP筋拉断破坏试件仅具有前2个阶段。轻骨料混凝土掺入钢纤维能够抑制构件开裂后刚度退化,降低混凝土压碎破坏脆性;提高GFRP筋配筋率可减小试件变形,GFRP筋直径对其无显著影响。采用中国规范(GB 50608-2010)计算试件正常使用极限状态下的挠度,结果稍显不安全;美国规范(ACI 440.1R-15)计算结果略偏保守;加拿大规范(ISIS-M03-07)与(CSA S806-12)计算值均具有一定的安全储备;建议公式计算结果较为准确且离散性较低,能够用于该类构件挠度的计算。  相似文献   

11.
为了研究锚贴U形钢板-混凝土组合加固钢筋混凝土梁的抗弯性能,设计5根加固梁和1根对比梁进行抗弯试验。试件的主要设计参数包括有无加载历史、钢板纵向加固长度、钢板厚度和螺杆间距。加载仪器采用1 000 kN梁柱加载系统,应变采集使用静态应变分析系统,挠度采用机电百分表测量。试验过程中,观测记录试验梁在荷载作用下截面应变、跨中挠度、加固部分与原混凝土之间的相对滑移、裂缝的产生与发展。基于平截面假定,推导试验梁的极限抗弯承载力计算公式,并对比模型试验与理论分析结果。试验结果表明:与未加固的对比梁相比,锚贴U形钢板-混凝土组合加固后的试验梁其开裂弯矩提高近50%,极限抗弯承载力提高约1倍;钢板纵向加固长度对梁的整体刚度有显著的影响,加固范围越大刚度提升越显著;加固范围应充分考虑加固部分截断处截面的抗剪能力,避免使试件从塑性弯曲破坏模式变成脆性剪切破坏模式;对比螺杆间距15 cm与30 cm试验梁的结果发现,只要符合构造要求的螺杆间距对试件的承载能力影响很小,但对裂缝开展有一定的影响,螺杆间距越密其裂缝开展明显变小;随着加固钢板面积增大,抗弯承载力也随之提高。针对加固后适筋破坏的RC梁,推导了极限抗弯承载力计算公式,利用公式计算出的极限抗弯承载力的理论值与试验值相对差值均在10%以内。  相似文献   

12.
针对混凝土箱梁腹板开裂、跨中下挠等问题,提出一种装配式预应力可变桁架加固体系。该体系由可变桁架、预应力筋和固定斜杆组成,可变桁架通过锚杆固定于加固梁两侧,张拉预应力使桁架上顶加固梁产生反拱,以此来消除或减小梁体开裂和下挠等病害,随后用斜杆固定桁架形成劲性骨架,进一步提高加固结构刚度和承载力。首先对该体系进行介绍,然后设计4片钢筋混凝土梁进行抗弯加固试验,对加固效果及影响因素进行分析验证。研究结果表明:提出的体系具有良好的加固效果,能有效抑制和延缓裂缝发展,改善加固梁的刚度和承载能力;此次试验中,加固梁的开裂、屈服以及极限荷载分别提高了107.28%、70.92%、74.55%以上;锚杆直径对承载力影响较小,但粗锚杆能有效约束端锚板滑移,改善结构整体刚度;端锚板对加固效果影响较大,加强型端锚板能充分发挥钢桁架、钢绞线强度特征,提高构件的极限承载能力,尤其能有效改善其延性破坏特征,极限挠度提高60%以上。  相似文献   

13.
为研究CFRP(Carbon Fiber Reinforced Polymer/Plastic)筋钢骨混凝土组合梁的抗弯性能,试验设计了3片CFRP筋钢骨混凝土组合梁,其中对比参数包括不同弹性模量的受拉主筋和不同CFRP筋配筋率,通过静载试验得到了钢骨混凝土组合梁在应变、挠度、裂缝开展以及抗弯承载能力等方面随着荷载增加...  相似文献   

14.
为研究纤维编织网-ECC联合加固RC梁的受弯性能,对1根普通RC梁和9根加固梁进行了四点弯曲加载,分析了ECC高度和纤维编织网层数对加固梁破坏形态、裂缝分布和承载力等受弯性能的影响。试验结果表明:加固梁受弯破坏时裂缝细而密,且呈现ECC中多、混凝土中少的分布特点;和普通RC梁相比,加固梁纯弯段混凝土裂缝数量增加33.3%~66.7%;增加纤维编织网层数或ECC高度对提高加固梁裂缝数量影响较小;加固梁承载性能随纤维编织网层数和ECC高度增加而提高,当ECC高度与加固梁截面高度之比为0.5且布置3层纤维编织网时,加固梁开裂荷载、屈服荷载、极限荷载和普通钢筋混凝土梁相比分别提高111.11%、37.86%、36.13%;ECC高度和纤维编织网层数对加固梁抗弯刚度影响较小,但影响作用不同;加固梁抗弯刚度随纤维编织网层数增加略有增加,随ECC高度增加略有减小;增加纤维编织网层数或ECC高度可降低加固梁钢筋应变。受弯加载过程中加固梁截面仍保持平面,满足平截面假设。基于正截面受弯承载力计算理论,并考虑纤维编织网利用率,建立了加固梁受弯承载力计算公式。由该公式得到的计算结果与试验结果吻合较好。最后,基于该公式分析了加固梁极限弯矩对ECC高度和纤维编织网层数的敏感性,发现加固梁极限弯矩对纤维编织网层数变化敏感性较低。  相似文献   

15.
为研究钢-UHPC华夫板组合梁负弯矩区抗弯性能,考虑华夫板板肋高度比、纵筋配筋率以及采用抗拔不抗剪栓钉连接件对钢-UHPC华夫板组合梁的破坏模式、裂缝发展规律及承载能力的影响,采用跨中单点加载方式完成了4根钢-UHPC华夫板组合梁试件在负弯矩作用下的静力加载试验。基于简化塑性理论,并考虑将UHPC受拉区的拉应力分布等效为均匀应力分布,提出了负弯矩区钢-UHPC华夫板组合梁的极限抗弯承载力计算方法。研究结果表明:负弯矩作用下,4根钢-UHPC华夫板组合梁试件的破坏形态均为典型的弯曲破坏;极限状态下,华夫板内纵向受拉钢筋屈服,钢梁上翼缘受拉屈服,钢梁下翼缘受压发生局部屈曲,华夫板跨中主裂缝贯通,其余裂缝呈现密集分布且纤细的特点。保证华夫板总高度90 mm不变,板肋高度比由1∶1减小为1∶2会加剧华夫板的裂缝开展,使试件的开裂荷载和初始刚度略有降低,但承载能力基本不变。华夫板配筋率增大1.05%,试件的承载力与刚度分别提高18.4%与7.7%,并且有助于约束华夫板的裂缝宽度。采用抗拔不抗剪栓钉连接件可在一定程度上抑制试件在正常使用阶段时的裂缝开展,但会导致试件承载力、刚度和延性下降,下降幅度分别为6.9%、9.6%和19.7%。根据所提出的钢-UHPC华夫板组合梁负弯矩区极限抗弯承载力的理论计算公式所得的计算值略低于试验值,且相对误差在10%以内。  相似文献   

16.
根据带波形钢腹板挑梁的钢-混凝土组合脊骨梁的小箱梁、大悬臂的结构特点,提出了考虑偏载效应影响的组合脊骨梁正应力计算公式;通过确定合理的抗弯极限状态,并基于简化塑性理论,推导出组合脊骨梁正、负弯矩截面的极限抗弯承载力计算公式和考虑混凝土翼板贡献的抗剪承载力计算公式;同时提出了波形钢腹板组合挑梁荷载横向分布计算的修正刚接梁法以及受载挑梁荷载横向分布系数随载位沿挑梁纵向变化而呈三次曲线分布的假设,并按照拟平截面假定,推导了波形钢腹板组合挑梁的开裂弯矩和弹性抗弯承载力计算公式。在此基础上进行了相应的模型试验研究,理论分析值和试验结果吻合良好,说明本文的设计公式精度满足要求,能够用于同类结构的设计计算。  相似文献   

17.
为研究铝合金/玻璃纤维增强复合材料(GFRP)筋近表面嵌入式加固混凝土梁的抗弯性能,以加固方式、加固筋类型和加固量为变量,设计了5根钢筋混凝土梁试件进行单调静载试验,重点分析了混凝土加固梁的破坏模式和破坏特征。研究结果表明:采用铝合金筋或GFRP筋嵌入式加固后混凝土梁的受弯承载力均显著提高;加固量相同时,GFRP筋加固梁、铝合金/GFRP筋混合加固梁和铝合金筋加固梁的极限荷载比未加固梁分别提高了105.8%、45.7%和17.5%,但混凝土梁采用GFRP筋加固后延性降低、脆性突出,而采用铝合金/GFRP筋混合加固或铝合金加固后混凝土梁的延性则与对比梁相当;GFRP筋嵌入式加固梁和铝合金筋嵌入式加固梁分别发生了混凝土保护层剥落破坏和加固筋屈服后混凝土压溃破坏,而铝合金/GFRP筋混合加固梁则先是GFRP筋与混凝土保护层发生剥离,之后随着作用跨中位移的持续增大,受压区混凝土发生压溃,破坏过程有两重防线。在试验研究基础上,采用截面分析法给出了嵌入式加固梁抗弯强度的理论计算模型与工程实用模型,计算结果表明:加固梁极限弯矩的试验值与理论预测值之比及与实用模型计算值之比的平均值分别为1.081和1.063,方差分别为0.003和0.005,吻合较好。  相似文献   

18.
为了研究FRP筋与普通钢筋(HRB筋)混合配筋混凝土梁在受弯过程中的裂缝开展机理及其计算方法,设计制作8根混合配筋混凝土梁和3根普通钢筋混凝土梁。通过改变FRP筋种类、FRP筋直径、钢筋强度、FRP筋和钢筋配筋面积比以及截面配筋率等参数,对比分析试验梁抗弯承载力、裂缝分布、平均裂缝间距和裂缝宽度的变化规律。给出FRP筋与钢筋混合配筋混凝土梁抗弯承载力建议计算公式,并结合相关试验数据对其预测值和试验值进行分析,证明建议计算公式的精确性和合理性。根据传统的钢筋混凝土梁裂缝宽度计算理论,结合现有试验结果,对21根混合配筋混凝土梁的受弯开裂特性进行综合分析,提出正常使用阶段平均裂缝间距lm和受拉纵筋应变不均匀系数ψ的计算公式,修正裂缝宽度短期扩大系数τs,并在此基础上提出短期最大裂缝宽度的建议计算公式。结果表明:混合配筋混凝土梁正截面仍符合平截面假定;随截面配筋率的增大,混合配筋混凝土梁的平均裂缝间距和最大裂缝宽度均逐渐减小;单层配筋混合配筋混凝土梁的最大裂缝宽度比双层配筋大;平均裂缝间距建议计算公式精度较好;短期最大裂缝宽度建议公式的计算值与实测值吻合较好。相关研究成果可为混合配筋混凝土梁的设计提供一定的参考。  相似文献   

19.
为探索新型结构波形钢腹板组合T梁的受力性能,制作了下翼板布置直线型体内纵向预应力筋的缩尺试验梁,采用两点对称加载的方式开展了静载破坏性试验,对试验梁的截面正应变分布、荷载-位移曲线、开裂弯矩、剪应力分布、破坏形态、裂缝发展规律等进行测试。使用ABAQUS软件建立了试验梁的有限元模型,采用混凝土的损伤塑性模型和钢材的理想弹塑性本构对加载全过程进行非线性分析。基于钢-混组合梁的收缩、徐变理论和钢筋混凝土梁的抗弯承载力计算方法,对试验梁的开裂荷载和抗弯承载力进行理论计算。结果表明:只布置下翼板纵向预应力筋的波形钢腹板组合T梁的荷载-位移全过程曲线表现出较明显的弹性、弹塑性和塑性变形阶段,具有较大的抗弯刚度和良好的抗裂性和延性;抗弯承载力与开裂荷载的比值为1.79,具有较合理的承载受力特点;整个加载过程中,钢腹板与混凝土翼板变形协调,表现为典型的受弯破坏形态;剪应力在波形钢腹板组合T梁的腹板中分布均匀,可不设置弯起筋提供抗剪承载力;忽略波形钢腹板的轴向变形刚度和抗弯承载力,能准确计算开裂荷载和抗弯承载力;波形钢腹板组合T梁的力学机理明确,静力性能良好,具有工程应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号