首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
官厅水库特大桥为主跨720m的单跨悬索桥。大桥南岸锚碇基础为33m高全钢筋混凝土沉井结构,标准平面尺寸为56m×50m。沉井中心距离京包铁路线仅60m,墩位处地质结构主要为粉质黏土和圆砾土。为对既有铁路线进行防护,采用单排钻孔灌注桩作为防护桩,在沉井施工之前完成防护桩的施工。沉井接高之前直接在地面根据沉井刃脚仿形开挖沟槽,沉井底节采用土模法在沟槽内安装模板和绑扎钢筋进行接高,底节完成后沉井采用翻模法正常接高,单次接高3m,接高到15m后开始第1次下沉施工。沉井共分2次下沉施工,进入地下水5m前采用干挖取土下沉,之后采用水下吸泥取土下沉。下沉施工采用潜水泵水下高压射水辅助吸泥,空气幕实施助沉。施工过程快速、平稳有序,确保了铁路路基的稳定,沉井按设计要求下沉到位。  相似文献   

2.
武汉鹦鹉洲长江大桥为三塔四跨钢-混结合梁悬索桥,桥跨布置为(200+2×850+200)m。该桥北锚碇基础为"带孔圆环+十字撑"结构沉井,圆环内沿圆周均布16个直径8.7m的井孔。为降低沉井施工对周围房屋、长江大堤的安全影响,沉井施工前在其外围10m处设置地下连续墙结构进行防护。沉井共分8节,采取在底节上接高第二节后下沉9m,再接高3节下沉14m,最后接高3节下沉22m的"3次接高3次下沉"施工方案。为防止出现翻砂事故,采取沉井内侧环向均匀取土、中间缓吸反压的技术措施,采用5孔单孔直径1mm的空气幕气龛助沉。在沉井即将到达设计标高时,在沉井内侧沿沉井壁吸泥形成环形沟槽、开动空气幕实现沉井精确就位。采取长距离管道水力排渣施工方法,有效避免对城市环保和路面交通的影响。  相似文献   

3.
南京长江第四大桥北锚碇沉井基础施工监控技术   总被引:2,自引:0,他引:2  
南京长江第四大桥北锚碇采用沉井基础,尺寸为69.0 m×58.0 m×52.8 m,距长江大堤仅90 m.沉井体积庞大,所处区域地质条件复杂,覆盖层较厚.依据规范并结合以往的施工经验,提出沉井几何姿态监控标准.介绍沉井下沉深度和平面位置及偏斜、刃脚踏面反力、沉井侧壁土压力、沉井结构应力、地下水位与井内水位、沉井底部土体开挖地形、地表沉降和长江防洪大堤沉降量的监测方案.通过施工监测,掌握沉井下沉的实时信息,为施工提供指导信息,确保施工安全顺利进行.  相似文献   

4.
《中南公路工程》1989,(4):49-53
所谓“装配式沉井”,实际就是将一个薄壁沉井根据施工条件分成若干节来预制,然后安装。即一节节地叠起来,在井壳内灌注水下混凝土,使之成整体,最后象普通沉井那样封底填心而成为一个桥墩的基础。 自1977年在阳朔大桥首次采用装配式沉井施工以来,在区内已有多座大桥相继采用,例如,上渣大桥、驮卢大桥、金陵大桥、石龙大桥、那阳大桥等,现在正在施工的武宣大桥已经是第七座采用装配式沉井施工深水基础的大桥,也是目前区内施工水位最深的一座大桥。 武宣大桥全长549.28m。宽9 2×1.5m,全桥有两个桥台,两个岸墩,四个水中桥墩,共七跨,跨度为35 5×80 35m,其中两边跨35m混凝土板拱,中间五跨为箱形拱。桥缘标高最高点为78.58m,墩基岩面最低点为18.20m,总高差为60.38m,设计施工水位为35.00m,最深墩为2~#墩,约17m水深。  相似文献   

5.
冯传宝 《桥梁建设》2021,51(1):74-81
连镇铁路五峰山长江大桥主桥为主跨1 092 m的公铁两用钢桁梁悬索桥,北锚碇采用100.7 m×72.1 m×56 m的矩形沉井基础.为了解沉井基础在施工过程中的变形及其对后续施工的影响,采用Abaqus软件建立沉井-地基以及沉井与邻近桩基础有限元模型,结合现场监测数据,针对沉井基础底板施工至主梁架设的11个工况,分析...  相似文献   

6.
戴润军 《隧道建设》2006,26(Z1):9-12
深圳前湾过海管廊工程始发竖井采用沉井法施工,要穿越富水高水压地层、淤泥地层、粉质粘土、中密粗砾砂、残积土等不同地层.沉井直径为18 m,深28.54 m,属大型沉井.详细介绍了沉井的施工技术.  相似文献   

7.
温州瓯江北口大桥中塔沉井冲刷防护技术   总被引:1,自引:0,他引:1  
温州瓯江北口大桥主桥为(215+2×800+275)m的三塔双层钢桁梁悬索桥,中塔采用沉井基础,沉井顶平面尺寸为66.0m×55.0m,总高68.0m。为了解沉井定位着床期间河床的局部冲刷情况,通过封闭水槽试验研究沉井定位着床期间的河床局部冲刷深度及冲刷形态。结果表明,河床局部冲刷非常严重,沉井下沉时会产生倾斜扭转。为确保沉井平稳安全着床,采用抛填防护层的方法对沉井周围20m范围内的河床进行预防护施工,防护层包括反滤层(厚0.8m,采用级配砂)和护面层(厚2.2m,采用粒径为5cm的碎石)。预防护施工后,经现场检测可知,着床后沉井中心偏差11cm,平面扭转0.21°,均小于允许值,沉井几何姿态控制良好。说明河床预防护技术可以有效减小局部冲刷,保证了沉井着床精度。  相似文献   

8.
《桥梁建设》2021,51(3)
芜湖长江三桥为主跨588 m的非对称矮塔斜拉桥,其3号桥塔墩处水深约25 m,水下岩石直接出露,弱风化岩层厚4~9.5 m,其下为单轴抗压强度75 MPa的微风化岩石。从结构受力、施工便捷及经济性等方面,对桩基础和设置沉井基础2种基础型式进行比选,由于设置沉井基础受力明确、施工便捷、工期较短、经济性较优,推荐采用。对设置沉井基础的结构形式、基础底面高程、顶面高程及盖板与井壁的连接方式进行研究,确定3号桥塔墩设置沉井基础选择钢结构形式,基础顶高程-5.5 m、底高程-25.0 m,基底置于微风化闪长玢岩中,沉井盖板与井壁采用PBL剪力键与剪力钉连接,设置沉井基础为圆端形,平面尺寸为65 m×35 m,高19.5 m,平面分为21个井孔。对设置沉井基础施工期、运营期及船撞、地震特殊荷载工况下的结构受力进行检算,结果表明各工况下结构受力均满足要求。设置沉井基础解决了深水裸岩建设条件下常规桩基础施工困难的问题,开拓了新型深水桥梁基础型式。  相似文献   

9.
沪通长江大桥为4线铁路、6车道公路合建桥梁,主航道桥采用跨径布置为(142+462+1 092+462+142)m的连续钢桁梁斜拉桥。该桥桥塔基础建设条件复杂,根据桥塔基础特性,从结构受力、经济性、施工便捷等方面对大直径钻孔桩基础和沉井基础方案(圆形沉井、矩形沉井)进行比选,最终推荐采用倒圆角的矩形沉井基础。矩形沉井下段采用钢沉井,上段采用混凝土沉井。28号、29号沉井总高分别为105m、115m。标准段井身平面尺寸为86.9m×58.7m(四周倒圆角半径为7.45m),考虑施工便捷,井身竖向分节,标准节段高6m。沉井为平面框架结构,平面布置为24个12.8m×12.8m井孔,封底混凝土厚14m,为确保封底混凝土与井身结构传力,钢沉井底部设置抗剪剪力键。  相似文献   

10.
武汉杨泗港长江大桥主桥为主跨1 700m的双层钢桁梁悬索桥,该桥2号墩采用沉井基础,沉井高50m,其中上部22m为钢筋混凝土结构,下部28m为钢壳混凝土结构(分为2节,高度分别为23m和5m,总重约4 850t)。23m高的底节钢沉井在工厂加工后,采用气囊法下水,下水时将下河托架和助浮结构进行一体化设计,利用气囊调整钢沉井角度,以实现钢沉井主动转向;采取在钢沉井底部设置纵、横梁及底托板,封闭12个井孔的助浮措施,以减小沉井浮运吃水深度。底节钢沉井采用以顶推为主、帮拖为辅的方式浮运至墩位处抛锚,采用无导向船重锚定位系统定位;定位后接高余下5m高的钢沉井,接高后注水下沉钢沉井,并浇筑钢壳混凝土,将钢沉井下沉至设计高程,完成钢沉井施工。  相似文献   

11.
武汉鹦鹉洲长江大桥北锚碇新型沉井基础设计   总被引:1,自引:1,他引:0  
武汉鹦鹉洲长江大桥主桥为三塔四跨悬索桥。该桥北锚碇基础经多方案比选采用多圆孔环形截面新型沉井结构。沉井中间大圆孔内设置十字形隔墙,圆环内沿圆周均布有小直径井孔。沉井总高43 m,共分8节,第1节为钢壳混凝土沉井,第2~8节均为钢筋混凝土沉井。北锚碇施工中采用不排水下沉、井壁增加空气幕等措施减小施工难度及风险。采用软件FLAC3D对沉井施工过程进行数值模拟分析,评估施工安全性能、施工引起的环境效应及运营加载后锚碇基础的变形等。计算结果表明,沉井分节下沉施工过程中其结构、地面变形均满足规范要求,施工可有效避免对周围建筑物和长江大堤的不利影响。  相似文献   

12.
2016年5月10日,随着一声"拔球"命令的下达,混凝土倾注而下,芜湖长江公铁大桥3号桥塔墩基础开始封底施工(见图1)。该桥3号桥塔墩为国内首座设置式钢沉井基础,圆端型结构,平面尺寸65m×35m,高19.5m。沉井自2015年12月18日下水后,先后完成沉井溜放、围堰接高、  相似文献   

13.
合福铁路铜陵长江大桥主桥为双塔多跨连续钢桁梁三索面斜拉桥,其3号桥塔墩采用圆端形沉井基础,沉井高68 m,其中上部18 m为钢筋混凝土结构,下部50 m为钢壳混凝土结构,总重约5000 t.50 m钢沉井在工厂分6节制造、组拼,由1200 t浮吊起吊装船、12800 t驳船运输至墩位,第1节钢沉井利用浮吊整节段起吊入水后自浮,在墩位处抛设锚锭临时定位,第2~6节钢沉井利用浮吊整节段起吊并对接接高,钢沉井采用无导向船重锚精确定位.实践证明,大型钢沉井整节段制造、运输、现场整节段对接接高施工技术保证了钢沉井的整体质量,加快了沉井施工进度.  相似文献   

14.
武汉鹦鹉洲长江大桥主桥为(200+2×850+200)m三塔悬索桥,该桥北锚碇为"带孔圆环+十字隔墙"重力式沉井基础,沉井外径66m,高43m;1号塔基础为44根φ2.0m钻孔灌注桩,2号塔基础为39根φ2.8m钻孔桩;3号塔基础为20根φ2.8m钻孔桩;南锚碇为"圆形嵌岩地下连续墙+内衬"结构形式,地下连续墙为钢筋混凝土结构,外径68m,壁厚1.5m。根据该桥基础特点,北锚碇沉井采用3轮接高、3次下沉施工;1号塔基础采用筑岛、双排防护桩施工方案;2号塔基础采用先钢围堰后平台的施工方案,钢围堰采用气囊法整体下河;3号塔基础采用先平台后围堰、单排钻孔防护桩施工方案;南锚碇采用液压铣槽机配合冲击钻施工地下连续墙的施工方案。  相似文献   

15.
正2016年5月10日,随着一声"拔球"命令的下达,混凝土倾注而下,芜湖长江公铁大桥3号桥塔墩基础开始封底施工(见图1)。该桥3号桥塔墩为国内首座设置式钢沉井基础,圆端型结构,平面尺寸65m×35m,高19.5m。沉井自2015年12月18日下水后,先后完成沉井溜放、围堰接高、注水下沉  相似文献   

16.
由于设计或施工上的原因,桥梁基础,尤其是深水基础的埋置深度不足,需要采取加固措施,采用水泥稳定卵石层是一种经济、简便、有效的办法。赛岐大桥是104国道跨越赛江的一座大型桥梁,由于位于近海河段,不但潮差大(最大潮差7.02m),而且水深达26m,7#沉井位于赛江主河道偏福州侧,该墩位在设计钻探时,由于钻探孔数不足,资料反映不全,同时,在设计时对沉井基底的岩面不平整性估计不足,所以在施工时,当沉井下沉至-23.67m标高时,沉井刃脚靠下游偏赛岐侧遇到突出的岩面而受阻,其余部分尚座落在卵石层上,经潜水员检查,接触岩石部分只占沉井周边的1/4。此…  相似文献   

17.
五峰山长江特大桥主桥为主跨1 092m的钢桁梁公铁两用悬索桥,北锚碇采用100.7m×72.1m×56m的沉井基础。该沉井首节采用钢壳混凝土结构、其余9节采用钢筋混凝土结构,采用"三次接高、三次下沉"的方案施工。为及时掌握沉井下沉施工过程中的几何姿态及受力情况,建立实时在线监测系统,对沉井几何姿态、沉井结构应力及沉井刃脚土压力进行自动化监测,基于监测数据及时进行沉井下沉控制。结果表明:下沉过程中沉井测点高差和倾斜度均在限值内,沉井挠度基本在20mm限值内,沉井几何姿态较好;沉井混凝土及钢结构测点的实测应力基本在限值范围内,沉井刃脚各测点的土压力均控制在1.20MPa限值内,沉井结构受力良好。  相似文献   

18.
沪通长江大桥主航道桥为(140+462+1 092+462+140)m双塔连续钢桁梁斜拉桥,28号桥塔墩沉井顶平面尺寸为86.9m×58.7m,钢沉井高50m。为解决钢沉井快速定位、精确着床的难题,采用"锚桩+重力锚"相结合的锚桩锚碇系统进行钢沉井定位施工。锚桩锚碇系统由锚桩、蛙式重力锚、钢丝绳、液压连续千斤顶及张拉控制系统组成,锚桩采用长53m钢管桩,锚固点位于河床面;收缆系统由大直径钢丝绳+钢绞线组成,设置在沉井顶面;主锚绳采用3.5 m的钢桩下端套入110mm的钢丝绳套进行锚固,并设置限位框架防止上滑;采用ANSYS有限元软件建立锚桩锚碇系统模型,得到结构受力及安全满足要求。施工时,采用2台联动APE400振动锤插打锚桩,锚碇抛锚定位后,采用锚桩锚碇系统进行钢沉井过缆、定位及着床施工。实践表明,沉井平面位置和姿态满足设计要求。  相似文献   

19.
芜湖长江公铁大桥主桥为主跨588m的双塔双索面箱桁组合梁斜拉桥,该桥3号桥塔墩采用平面尺寸为65m×35m的圆端形设置式沉井基础。在沉井施工中,基坑采用钻爆法整层水下爆破成型;采用2艘抓斗挖泥船进行水下清渣;采用船载多波束和侧扫声纳法进行水下测量;采用重型锚碇系统及沉井调平系统进行沉井精确定位;采取抛填袋装碎石的方式进行沉井外壁防护;沉井分2次灌注水下封底混凝土,第1次全断面封底,第2次采用逐个井孔、逐舱的方式进行混凝土灌注;沉井盖板混凝土分2次浇筑成型,从盖板四周向中间分层、分段浇筑混凝土。  相似文献   

20.
南京长江第四大桥北锚碇采用沉井基础,沉井尺寸为69.0 m×58.0 m×52.8 m,置于密实卵砾石层,工程地质条件复杂.沉井共分11节,第1节为钢壳混凝土沉井,其余均为钢筋混凝土沉井.采用打设砂桩和换填砂土复合地基加固法加固地基.在加固地基上现场拼装钢壳沉井节段,浇注第1节沉井混凝土.11节沉井分4次接高下沉,首次下沉采取水力吸泥机取土、降排水下沉,其余3次下沉采取空气吸泥机取土、不排水下沉.沉井下沉就位后按照4个分区的顺序逐区进行封底混凝土施工.施工监测表明,沉井下沉姿态、偏差均控制在规范标准之内.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号